• Title/Summary/Keyword: Closed convex cone

Search Result 8, Processing Time 0.019 seconds

CONVERGENCE OF A NEW MULTISTEP ITERATION IN CONVEX CONE METRIC SPACES

  • Gunduz, Birol
    • Communications of the Korean Mathematical Society
    • /
    • v.32 no.1
    • /
    • pp.39-46
    • /
    • 2017
  • In this paper, we propose a new multistep iteration for a finite family of asymptotically quasi-nonexpansive mappings in convex cone metric spaces. Then we show that our iteration converges to a common fixed point of this class of mappings under suitable conditions. Our result generalizes the corresponding result of Lee [5] from the closed convex subset of a convex cone metric space to whole space.

ON SURROGATE DUALITY FOR ROBUST SEMI-INFINITE OPTIMIZATION PROBLEM

  • Lee, Gue Myung;Lee, Jae Hyoung
    • Journal of the Chungcheong Mathematical Society
    • /
    • v.27 no.3
    • /
    • pp.433-438
    • /
    • 2014
  • A semi-infinite optimization problem involving a quasi-convex objective function and infinitely many convex constraint functions with data uncertainty is considered. A surrogate duality theorem for the semi-infinite optimization problem is given under a closed and convex cone constraint qualification.

AN EXTENSION OF SCHNEIDER'S CHARACTERIZATION THEOREM FOR ELLIPSOIDS

  • Dong-Soo Kim;Young Ho Kim
    • Bulletin of the Korean Mathematical Society
    • /
    • v.60 no.4
    • /
    • pp.905-913
    • /
    • 2023
  • Suppose that M is a strictly convex hypersurface in the (n + 1)-dimensional Euclidean space 𝔼n+1 with the origin o in its convex side and with the outward unit normal N. For a fixed point p ∈ M and a positive constant t, we put 𝚽t the hyperplane parallel to the tangent hyperplane 𝚽 at p and passing through the point q = p - tN(p). We consider the region cut from M by the parallel hyperplane 𝚽t, and denote by Ip(t) the (n + 1)-dimensional volume of the convex hull of the region and the origin o. Then Schneider's characterization theorem for ellipsoids states that among centrally symmetric, strictly convex and closed surfaces in the 3-dimensional Euclidean space 𝔼3, the ellipsoids are the only ones satisfying Ip(t) = 𝜙(p)t, where 𝜙 is a function defined on M. Recently, the characterization theorem was extended to centrally symmetric, strictly convex and closed hypersurfaces in 𝔼n+1 satisfying for a constant 𝛽, Ip(t) = 𝜙(p)t𝛽. In this paper, we study the volume Ip(t) of a strictly convex and complete hypersurface in 𝔼n+1 with the origin o in its convex side. As a result, first of all we extend the characterization theorem to strictly convex and closed (not necessarily centrally symmetric) hypersurfaces in 𝔼n+1 satisfying Ip(t) = 𝜙(p)t𝛽. After that we generalize the characterization theorem to strictly convex and complete (not necessarily closed) hypersurfaces in 𝔼n+1 satisfying Ip(t) = 𝜙(p)t𝛽.

NECESSARY CONDITIONS FOR OPTIMAL CONTROL PROBLEM UNDER STATE CONSTRAINTS

  • KIM KYUNG-EUNG
    • Journal of the Korean Mathematical Society
    • /
    • v.42 no.1
    • /
    • pp.17-35
    • /
    • 2005
  • Necessary conditions for a deterministic optimal control problem which involves states constraints are derived in the form of a maximum principle. The conditions are similar to those of F.H. Clarke, R.B. Vinter and G. Pappas who assume that the problem's data are Lipschitz. On the other hand, our data are not continuously differentiable but only differentiable. Fermat's rule and Rockafellar's duality theory of convex analysis are the basic techniques in this paper.

GENERALIZED INVEXITY AND DUALITY IN MULTIOBJECTIVE NONLINEAR PROGRAMMING

  • Das, Laxminarayan;Nanda, Sudarsan
    • Journal of applied mathematics & informatics
    • /
    • v.11 no.1_2
    • /
    • pp.273-281
    • /
    • 2003
  • The purpose of this paper is to study the duality theorems in cone constrained multiobjective nonlinear programming for pseudo-invex objectives and quasi-invex constrains and the constraint cones are arbitrary closed convex ones and not necessarily the nonnegative orthants.

DEFORMATION SPACES OF CONVEX REAL-PROJECTIVE STRUCTURES AND HYPERBOLIC AFFINE STRUCTURES

  • Darvishzadeh, Mehdi-Reza;William M.Goldman
    • Journal of the Korean Mathematical Society
    • /
    • v.33 no.3
    • /
    • pp.625-639
    • /
    • 1996
  • A convex $RP^n$-structure on a smooth anifold M is a representation of M as a quotient of a convex domain $\Omega \subset RP^n$ by a discrete group $\Gamma$ of collineations of $RP^n$ acting properly on $\Omega$. When M is a closed surface of genus g > 1, then the equivalence classes of such structures form a moduli space $B(M)$ homeomorphic to an open cell of dimension 16(g-1) (Goldman [2]). This cell contains the Teichmuller space $T(M)$ of M and it is of interest to know what of the rich geometric structure extends to $B(M)$. In [3], a symplectic structure on $B(M)$ is defined, which extends the symplectic structure on $T(M)$ defined by the Weil-Petersson Kahler form.

  • PDF

A WEIGHTED GEOMETRIC REGULARITY FROM ORDER RESTRICTED STATISTICAL INFERENCE

  • Park, Chul-Gyu;Ree, Sang-Wook
    • Journal of applied mathematics & informatics
    • /
    • v.6 no.3
    • /
    • pp.859-866
    • /
    • 1999
  • In Eucliden k-space the cone of vectors x=($\chi$1, $\chi$2, ...,$\chi$k) satisfying $\chi$1$\leq$$\chi$ 2, $\leq$...$\leq$$\chi$k and {{{{ SUM { }`_{j } ^{k } }}= 1 $\chi$j=0 is generated by the vectors vj=(j-k,...j-k...j) having j-k's in its first j coordinates and j's for the remaining k-j coordinates for 1$\leq$j$\leq$i