• Published : 2003.01.01


The purpose of this paper is to study the duality theorems in cone constrained multiobjective nonlinear programming for pseudo-invex objectives and quasi-invex constrains and the constraint cones are arbitrary closed convex ones and not necessarily the nonnegative orthants.



  1. Asia Pacific Journal of Operational Research v.5 Duality in peseudo lineat multio multiobhective programming C. R. Rector;S. Chandar;Durga Prasad
  2. J. Aust. Math. Soc. Ser. B v.28 What is invexity? Z. Ben-Israel;B. Mond
  3. Journ. of Optimization Theory and Applications v.35 no.3 Duality in nonlinear multiple criteria optimization problems G. Bitran
  4. Bull. Astral. Math. Soc. v.24 Invex functions and constrained local minima B. D. Craven
  5. J. Int. Opt. Science v.8 no.2 Proper efficiency and milti-objective duality in nonliner programming R. R. Egudo
  6. J. Math. Anal. Appl. v.126 Multi-objective duality inverxity R. R. Rgudo;M. A. Hanson
  7. J. Math. Anal. Appl. v.22 Proper efficiency and theory of vector maximization A. M. Geoffrion
  8. J. Math. Anal. Appl. v.80 On suffuiciency of Kuhn-Tucker conditions M. A. Hanson
  9. European J. Oper. Res. v.48 Generalized convexity and symmetric duality in nonlinear programming K. Kar;S. Nanda
  10. J. Math. Anal. Appl. v.105 Optimality criteria in nonlinear programming involving non-convex functions R. N. Kaul;S. Kaur
  11. Non-linear programming O. L. Mangasarian
  12. Generalized concavity in optimization and economics Generalized concavity and duality B. Mond;T. Weir
  13. Opsearch v.25 no.2 Invex generalization of some duality results S. Nanda
  14. Naval Resarch Kogistics v.38 no.6 Multiobjective fractional duality theory C. Singh;M. A. Hanson
  15. Opsearch v.25 A note on invex functions and duality in multiple objecive optimization T. A. Weir