• Title/Summary/Keyword: Closed chamber

Search Result 223, Processing Time 0.022 seconds

Carbon Mineralization in different Soils Cooperated with Barley Straw and Livestock Manure Compost Biochars (토양 종류별 보릿짚 및 가축분 바이오차 투입이 토양 탄소 무기화에 미치는 영향)

  • Park, Do-Gyun;Lee, Jong-Mun;Choi, Eun-Jung;Gwon, Hyo-Suk;Lee, Hyoung-Seok;Park, Hye-Ran;Oh, Taek-Keun;Lee, Sun-Il
    • Journal of the Korea Organic Resources Recycling Association
    • /
    • v.30 no.4
    • /
    • pp.67-83
    • /
    • 2022
  • Biochar is a carbon material produced through the pyrolysis of agricultural biomass with limited oxygen condition. It has been suggested to enhance the carbon sequestration and mineralization of soil carbon. Objective of this study was to investigate soil potential carbon mineralization and carbon dioxide(CO2) emissions in different soils cooperated with barely straw and livestock manure biochars in the closed chamber. The incubation was conducted during 49 days using a closed chamber. The treatments consisted of 2 different biochars that were originated from barley straw and livestock manure, and application amounts were 0, 5, 10 and 20 ton ha-1 with different soils as upland, protected cultivation, converted and reclaimed. The results indicated that the TC increased significantly in all soils after biochar application. Mineralization of soil carbon was well fitted for Kinetic first-order exponential rate model equation (P<0.001). Potential mineralization rate ranged from 8.7 to 15.5% and 8.2 to 16.5% in the barely straw biochar and livestock manure biochar treatments, respectively. The highest CO2 emission was 81.94 mg kg-1 in the upland soil, and it was more emitted CO2 for barely straw biochar application than its livestock biochar regardless of their application rates. Soil amendment of biochar is suitable for barely straw biochar regardless of application rates for mitigation of CO2 emission in the cropland.

A Practical Method to Quantify Very Low Fluxes of Nitrous Oxide from a Rice Paddy (벼논에서 미량 아산화질소 플럭스의 정량을 위한 실용적 방법)

  • Okjung, Ju;Namgoo, Kang;Hoseup, Soh;Jung-Soo, Park
    • Korean Journal of Agricultural and Forest Meteorology
    • /
    • v.24 no.4
    • /
    • pp.285-294
    • /
    • 2022
  • In order to accurately calculate greenhouse gas emissions in the agricultural field, Korea has been developing national-specific emission factors through direct measurement of gas fluxes using the closed-chamber method. In the rice paddy, only national-specific emission factors for methane (CH4) have been developed. It is thus necessary to develop those for nitrous oxide (N2O) affected by the application of nitrogen fertilizer. However, since the concentration of N2O emission from rice cultivation is very low, the QA/QC methods such as method detection and practical quantification limits are important. In this study, N2O emission from a rice paddy was evaluated affected by the amount of nitrogen fertilizer, by taking into account both method detection and practical quantification limits for N2O concentration. The N2O emission from a rice paddy soils affected by the nitrogen fertilizer application was estimated in the following order. The method detection limit (MDL) of N2O concentration was calculated at 95% confidence level based on the pooled standard deviation of concentration data sets using a standard gas with 98 nmol mol-1 N2O 10 times for 3 days. The practical quantification limit (PQL) of the N2O concentration is estimated by multiplying 10 to the pooled standard deviation. For the N2O flux data measured during the rice cultivation period in 2021, the MDL and PQL of N2O concentration were 18 nmol mol-1 and 87 nmol mol-1, respectively. The measured values above the PQL were merely about 12% of the total data. The cumulative N2O emission estimated based on the MDL and PQL was higher than the cumulative emission without nitrogen fertilizer application. This research would contribute to improving the reliability in quantification of the N2O flux data for accurate estimates of greenhouse gas emissions and uncertainties.

Effects of Light Color on Energy Expenditure and Behavior in Broiler Chickens

  • Kim, Nara;Lee, Sang-Rak;Lee, Sang-Jin
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.27 no.7
    • /
    • pp.1044-1049
    • /
    • 2014
  • This study was conducted in order to investigate whether the presence of light or different colors of light would influence the energy expenditure and behavior of broiler chickens. Eight 8-week-old broiler chickens were adapted to a respiration chamber (Length, 28.5 cm; Height, 38.5 cm; Width, 44.0 cm) for one week prior to the initiation of the experiment. In experiment 1, energy expenditure and behavior of the chickens were analyzed in the presence or absence of light for four days. Chickens were exposed to 6 cycles of 2 h light/2 h dark period per day. In experiment 2, the broiler chickens that had been used in experiment 1 were used to evaluate the effect of 4 different wavelength light-emitting diodes (LEDs) on the energy expenditure and behavior of broiler chickens. The LEDs used in this study had the following wavelength bands; white (control), red (618 to 635 nm), green (515 to 530 nm) and blue (450 to 470 nm). The chickens were randomly exposed to a 2-h LED light in a random and sequential order per day for 3 days. Oxygen consumption and carbon dioxide production of the chickens were recorded using an open-circuit calorimeter system, and energy expenditure was calculated based on the collected data. The behavior of the chickens was analyzed based on following categories i.e., resting, standing, and pecking, and closed-circuit television was used to record these behavioral postures. The analysis of data from experiment 1 showed that the energy expenditure was higher (p<0.001) in chickens under light condition compared with those under dark condition. The chickens spent more time with pecking during a light period, but they frequently exhibited resting during a dark period. Experiment 2 showed that there was no significant difference in terms of energy expenditure and behavior based on the color of light (white, red, green, and blue) to which the chickens were exposed. In conclusion, the energy expenditure and behavior of broiler chickens were found to be strongly affected by the presence of light. On the other hand, there was no discernible difference in their energy expenditure and behavior of broiler chickens exposed to the different LED lights.

Effect of Salt Concentration on Methane Emission in a Coastal Reclaimed Paddy Soil Condition: Pot Test (간척지 논 토양의 염 농도가 메탄 배출에 미치는 영향)

  • Lim, Chang-Hyun;Kim, Sang-Yoon;Jeong, Seung-Tak;Kim, Gun-Yeob;Kim, Pil-Joo
    • Korean Journal of Environmental Agriculture
    • /
    • v.32 no.4
    • /
    • pp.252-259
    • /
    • 2013
  • BACKGROUND: Salt accumulation in coastal reclaimed soil can decrease plant growth and productivity, which could lead to considerable variation of methane($CH_4$) emission in a rice paddy. The objective of this study was to evaluate the effect of salt concentration on $CH_4$ emission in a coastal reclaimed soil. METHODS AND RESULTS: The effect of salt concentration on $CH_4$ emission and rice growth characteristics was studied by pot test, which packed by reclaimed paddy soils collected from Galsa, Hadong, Gyeongnam province. Electrical conductivity(EC) of each treatment was controlled by 0.98, 2.25, 5.05 and 9.48 dS/m and $CH_4$ emission was characterized a week interval by closed chamber method during rice cultivation. The $CH_4$ emission rate was significantly decreased with increase of salt accumulation, but total $CH_4$ flux in EC 5.50 dS/m treatment was lower than those of EC 9.48 dS/m treatment. It seems because of higher content of water soluble $SO{_4}^{2-}$ in EC 5.50 dS/m treatment than those of EC 9.48 dS/m treatment. Rice growth and grain yield were significantly decreased with increase of salt accumulation. Soil properties, especially EC and pH were negatively correlated with $CH_4$ flux, while rice growth characteristics like plant height and tiller number show significantly positive correlation with $CH_4$ flux. CONCLUSION(S): Conclusively, salt accumulation significantly decreased $CH_4$ flux in a rice paddy, which could be useful information for evaluating $CH_4$ flux in reclaimed area in Korea.

Effect of precipitation on soil respiration in a temperate broad-leaved forest

  • Jeong, Seok-Hee;Eom, Ji-Young;Park, Joo-Yeon;Chun, Jung-Hwa;Lee, Jae-Seok
    • Journal of Ecology and Environment
    • /
    • v.42 no.2
    • /
    • pp.77-84
    • /
    • 2018
  • Background: For understanding and evaluating a more realistic and accurate assessment of ecosystem carbon balance related with environmental change or difference, it is necessary to analyze the various interrelationships between soil respiration and environmental factors. However, the soil temperature is mainly used for gap filling and estimation of soil respiration (Rs) under environmental change. Under the fact that changes in precipitation patterns due to climate change are expected, the effects of soil moisture content (SMC) on soil respiration have not been well studied relative to soil temperature. In this study, we attempt to analyze relationship between precipitation and soil respiration in temperate deciduous broad-leaved forest for 2 years in Gwangneung. Results: The average soil temperature (Ts) measured at a depth of 5 cm during the full study period was $12.0^{\circ}C$. The minimum value for monthly Ts was $-0.4^{\circ}C$ in February 2015 and $2.0^{\circ}C$ in January 2016. The maximum monthly Ts was $23.6^{\circ}C$ in August in both years. In 2015, annual precipitation was 823.4 mm and it was 1003.8 mm in 2016. The amount of precipitation increased by 21.9% in 2016 compared to 2015, but in 2015, it rained for 8 days more than in 2016. In 2015, the pattern of low precipitation was continuously shown, and there was a long dry period as well as a period of concentrated precipitation in 2016. 473.7 mm of precipitation, which accounted for about 51.8% of the precipitation during study period, was concentrated during summer (June to August) in 2016. The maximum values of daily Rs in both years were observed on the day when precipitation of 20 mm or more. From this, the maximum Rs value in 2015 was $784.3mg\;CO_2\;m^{-2}\;h^{-1}$ in July when 26.8 mm of daily precipitation was measured. The maximum was $913.6mg\;CO_2\;m^{-2}\;h^{-1}$ in August in 2016, when 23.8 mm of daily precipitation was measured. Rs on a rainy day was 1.5~1.6 times higher than it without precipitation. Consequently, the annual Rs in 2016 was about 12% higher than it was in 2015. It was shown a result of a 14% increase in summer precipitation from 2015. Conclusions: In this study, it was concluded that the precipitation pattern has a great effect on soil respiration. We confirmed that short-term but intense precipitation suppressed soil respiration due to a rapid increase in soil moisture, while sustained and adequate precipitation activated Rs. In especially, it is very important role on Rs in potential activating period such as summer high temperature season. Therefore, the accuracy of the calculated values by functional equation can be improved by considering the precipitation in addition to the soil temperature applied as the main factor for long-term prediction of soil respiration. In addition to this, we believe that the accuracy can be further improved by introducing an estimation equation based on seasonal temperature and soil moisture.

Evaluating the Applicability of the DNDC Model for Estimation of CO2 Emissions from the Paddy Field in Korea (전국 논 토양 이산화탄소 배출량 추정을 위한 DNDC 모형의 국내 적용성 평가)

  • Hwang, Wonjae;Kim, Yong-Seong;Min, Hyungi;Kim, Jeong-Gyu;Cho, Kijong;Hyun, Seunghun
    • Korean Journal of Environmental Biology
    • /
    • v.35 no.1
    • /
    • pp.13-20
    • /
    • 2017
  • Greenhouse gas emission from agricultural land is recognized as an important factor influencing climatic change. In this study, the national $CO_2$ emission was estimated for paddy soils, using soil GHG emission model (DNDC) with $1km^2$ scale. To evaluate the applicability of the model in Korea, verification was carried out based on field measurement data using a closed chamber. The total national $CO_2$ emission in 2015 was estimated at $5,314kt\;CO_2-eq$, with the emission per unit area ranging from $2.2{\sim}10.0t\;CO_2-eq\;ha^{-1}$. Geographically, the emission of Jeju province was particularly high, and the emission from the southern region was generally high. The result of the model verification analysis with the field data collected in this study (n=16) indicates that the relation between the field measurement and the model prediction was statistically similar (RMSE=22.2, ME=0.28, and $r^2=0.53$). More field measurements under various climate conditions, and subsequent model verification with extended data sets, are further required.

Estimation of Cardinal Temperatures for Germination of Seeds from the Common Ice Plant Using Bilinear, Parabolic, and Beta Distribution Models

  • Cha, Mi-Kyung;Park, Kyoung Sub;Cho, Young-Yeol
    • Horticultural Science & Technology
    • /
    • v.34 no.2
    • /
    • pp.236-241
    • /
    • 2016
  • The common ice plant (Mesembryanthemum crystallinum L.) has some medicinal uses and recommended plant in closed-type plant factory. The objective of this study was to estimate the cardinal temperatures for seed germination of the common ice plant using bilinear, parabolic, and beta distribution models. Seeds of the common ice plant were germinated in the dark in a growth chamber at four constant temperatures: 16, 20, 24, and $28^{\circ}C$. For this, four replicates of 100 seeds were placed on two layers of filter paper in a 9-cm petri dish and radicle emergence of 0.1 mm was scored as germination. The times to 50% germination were 4.3, 2.5, 2.0, and 1.8 days at 16, 20, 24, and $28^{\circ}C$, respectively, indicating that the germination of this warm-weather crop increased with temperature. Next, the time course of germination was modeled using a logistic function. For the selection of an accurate model, seeds were germinated in the dark at constant temperatures of 6, 12, 32, and $36^{\circ}C$. Germination started earlier and increased rapidly at temperatures above $20^{\circ}C$. The minimum, optimal, and maximum temperatures were estimated by regression of the inverse of time to 50% germination rate, as a function of the temperature gradient. The different functions estimated differing minimum, optimal and maximum temperatures, with 5.7, 27.7, and $36.5^{\circ}C$, respectively for the bilinear function, 13.4, 25.0, and $36.6^{\circ}C$, respectively, for the parabolic function and 7.8, 25.9, and $36.0^{\circ}C$, respectively, for the beta distribution function. The models estimated that the inverse of time to 50% germination rate was 0 at 6 and $36^{\circ}C$. The observed final germination rates at 12 and $32^{\circ}C$ were 62 and 97%, respectively. Our data show that a beta distribution function provides a useful model for estimating the cardinal temperatures for germination of seed from the common ice plant.

A Study on the Efficiency Estimation of Halogen free Fire Resistance Cable (저독성 내화전선 케이블의 성능평가에 관한 연구)

  • 윤헌주;홍진웅;유동일;윤재선;곽동일
    • Fire Science and Engineering
    • /
    • v.16 no.1
    • /
    • pp.18-23
    • /
    • 2002
  • Efficiency estimation of toxicity free resistance cable experiments were conducts to understand toxicity free fire ersistance polyolefin insulation material and smoke density characteristic and combustion gas corrosion analysis. A main cause of fire-growth and generating toxic gas when it burns, should be dealt with great care in life safety design. Similar patterned fire incidents such as, Inchon Live-Hof Pub Restaurant as, Sea-land Children Resort have proven that serious loss of lives were caused by hazardous gas generated fire resistance cable materials. In this paper, Referenced documents were ASTM E662 standard test method for specific Ds genalated by solid materials. The furnace control system shall maintain the required irradiance level under steady-state condition with the chamber door closed of 2.5$\pm40.04〔w/$\textrm{cm}^2$〕for 20 min. According to the results of the smoke density analysis of NFR-8 and FR-PVC the highest decomposition flaming smoke density range of NFR-8 and FR-PVC were 25.2 to 37.5 and 51.1 respectively. Nonflaming smoke density range of NFR-8 and FR-PVC were 100.4 to 112.2 and 126.5 to 398.8. Also, the fire gases was occurred carbon monoxide and decomposition than in polyolefin due to incomplete combustion of PVC which has high content of carbon in chemical compound.

Effect of By-Product Gypsum Fertilizer on Methane Gas Emissions and Rice Productivity in Paddy Field

  • Park, Jun-Hong;Sonn, Yeon-Kyu;Kong, Myung-Suk;Zhang, Yong-Seon;Park, Sang-Jo;Won, Jong-Gun;Lee, Suk-Hee;Seo, Dong-Hwan;Park, So-Deuk;Kim, Jang-Eok
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.49 no.1
    • /
    • pp.30-35
    • /
    • 2016
  • Rice cultivation in paddy field affects the global balance of methane ($CH_4$) as a key greenhouse gas. To evaluate a potential use of by-product gypsum fertilizer (BGF) in reducing $CH_4$ emission from paddy soil, $CH_4$ fluxes from a paddy soil applied with BGF different levels (0, 2, 4 and $8Mg\;ha^{-1}$) were investigated by closed-chamber method during rice cultivation period. $CH_4$ flux significantly decreased (p<0.05) with increasing level of BGF application. $8Mg\;ha^{-1}$ of BGF addition in soil reduced $CH_4$ flux by 60.6% compared to control. Decreased soil redox potential (Eh) resulted in increasing $CH_4$ emission through a $CO_2$ reduction reaction. The concentrations of dissolved calcium (Ca) and sulfate ion (${SO_4}^{2-}$) in soil pore water were significantly increased as the application rate of BGF increased and showed negatively correlations with $CH_4$ flux. Decreased $CH_4$ flux with BGF application implied that ${SO_4}^{2-}$ ion led to decreases in electron availability for methanogen and precipitation reaction of Ca ion with inorganic carbon including carbonate and bicarbonate as a source of $CH_4$ formation under anoxic condition. BGF application also increased rice grain yield by 16% at $8Mg\;ha^{-1}$ of BGF addition. Therefore, our results suggest that BGF application can be a good soil management practice to reduce $CH_4$ emission from paddy soil and to increase rice yield.

EFFECT OF PHOSPHORIC ACID CONCENTRATION ON THE DIFFUSION OF HEMA THROUGH DENTIN (상아질을 통한 HEMA의 확산에 인산농도가 미치는 영향)

  • Yoon, Mi-Ran;Lee, Kwang-Won;Park, Soo-Joung
    • Restorative Dentistry and Endodontics
    • /
    • v.24 no.1
    • /
    • pp.147-155
    • /
    • 1999
  • The purpose of this study was to investigate the effect of phosphoric acid concentration on the movement of 2-hydroxyethylmethacrylate(HEMA) from bonding resin - resin composite combination through dentin in vitro. Freshly extracted human third molar teeth were divided into four groups each of 10 teeth. A closed chamber with 1 ml distilled water was attached to the CEJ of each tooth. An occlusal cavity of 4mm diameter & remaining dentin thickness of 1.0-1.5mm was prepared in each tooth. Dentin was treated with 10% phosphoric acid gel for 15 seconds. 32% phosphoric acid gel for 15 seconds, or with 35% phosphoric acid gel for 15 seconds. A control group not treated with acid gel was also prepared. The cavities were rinsed, dried and then treated with the HEMA-containing All-Bond 2 primer & bonding resin which was light-cured for 10 seconds. The cavities were then restored with Z100 composite resin(shade:A3.5:3M Dent. Prod. USA) & light cured for 30 seconds. Water samples were retrieved from the chambers over a time course (4.32, 14.4, 43.2, 144 & 432 minutes ; 1, 3 & 10 days) and analyzed by high performance liquid chromatography. The results were as follows. 1. HEMA was detected in the pulp chambers of all teeth from 4.32 minutes after resin placement The highest rate of release was in the first sample period (0-4.32 min) & rate of release declined exponentially thereafter. 2. No significant differences were found for mean release rate for HEMA over a time course among the four groups (p>0.05). 3. The diffusion rate was significantly (p<0.05) less for 10% phosphoric acid gel than 32% phosphoric acid gel at the second sample period(4.32-14.4 min). 4. No significant differences were found for cumulative HEMA diffusion among the four groups at 10 days(p>0.05) and mean total(cumulative) release at 10 days for all groups was in the 9 - 16 nmol range. 5. The cumulative release was significantly (p<0.05) less for 10% phosphoric acid gel than 32% phophoric acid gel at the third(14.4-43.2 min) & fourth(43.2-144 min) sample period.

  • PDF