• Title/Summary/Keyword: Climate sensitivity

Search Result 230, Processing Time 0.027 seconds

Development and Evaluation of an Inexpensive Weighing Chamber for Particulate Filters (미세먼지 여지의 무게 측정을 위한 저비용 계량챔버 개발 및 성능평가)

  • Jun-Hyun Park;Ho-Jin Lim
    • Journal of Environmental Science International
    • /
    • v.32 no.2
    • /
    • pp.131-137
    • /
    • 2023
  • Filter and microbalance sensitivity in measuring fine particulate matter mass is greatly influenced by particulate properties and environmental factors. Temperature and humidity control inside a measuring chamber with a microbalance, and neutralization of static charges on filters are essential for consistent filter weighing. Commercial weighing chambers are expensive with a unit price of tens of millions won. This study developed an inexpensive weighing chamber for weighing fine particulate matter and evaluatedits weighing performance. A microbalance with 1 ㎍ precision was used to measure the weight of a filter. The microbalance was set in a transparent acrylic enclosure (100 × 60 × 65 cm3) equipped with temperature and humidity control equipments. Weighing performance of the chamber was examined using Teflon filters with or without different particulate sample types. Temperature and humidity were maintained at approximately 23.2±1.2 ℃ and 36.2±1.8℃ for 8 days, respectively.

Estimating carbon dioxide uptake in wetland ecosystems of Tumen River Basin using eddy covariance flux data (에디 공분산 기반의 플럭스 타워 관측자료를 이용한 두만강 유역 습지 생태계 CO2 흡수량 분석)

  • Chen, Pengshen;Zhao, Shuqing;Cui, Guishan;Lee, Dongkun
    • Journal of the Korean Society of Environmental Restoration Technology
    • /
    • v.27 no.3
    • /
    • pp.67-74
    • /
    • 2024
  • In the context of rapid temperature rise in mid-to-high latitude regions, cold region wetlands have become a hotspot for current wetland carbon cycle research due to their high sensitivity to climate change. Strengthening the monitoring of CO2 fluxes in wetland ecosystems is of great practical significance for clarifying the carbon balance of wetlands and maintaining the ecological balance of wetland ecosystems in China's high latitude regions. In this study, the carbon flux (NEE, Net ecosystem exchange; GPP, Gross Primary Production; RECO, Ecosystem response) of Jingxin Wetland was monitored by eddy correlation method from August 2021 to March 2024.2022-2023 shows CO2 sinks, absorbing 349.4 g C·m-2·yr-1 annually. The correlation analysis showed that Ta, VPD and PPFD were the main environmental factors affecting CO2 flux in Jingxin wetland.

Estimation of Heat Exchange Rate of Standing Column Well for Sustainable Groundwater Curtain for Greenhouse Heating (순환식 지하수 수막시스템 그린하우스 난방을 위한 스탠딩컬럼웰 열교환율 산정)

  • Byoung Ohan Shim;Seung Gyun Baek;Seonghoon Jeong
    • Journal of the Korean Society for Geothermal and Hydrothermal Energy
    • /
    • v.20 no.2
    • /
    • pp.11-23
    • /
    • 2024
  • In order to design a standing column well (SCW) for a sustainable groundwater curtain system for greenhouse heating, we conducted parameter sensitivity tests. These tests simulated the outlet temperature changes of the SCW in a groundwater recirculating greenhouse cultivation system. Our modeling considered ground thermal conductivity and hydrogeological conditions. Specifically, we examined several factors, including SCW length, enhanced thermal conductivity of the ground, and groundwater circulation rate. The simulation results indicated that there was not a significant difference in the heat exchange rate based on the characteristics of enhanced thermal conductivity. However, we anticipate a substantial difference in the case of varying SCW lengths. Therefore, we conclude that the simulation results are primarily influenced by conductive heat exchange values, as the circulating water remains at a constant groundwater level.

Sensitivity Analysis on Ecological Factors Affecting Forest Fire Spreading: Simulation Study (산불확산에 영향을 미치는 생태학적 요소들간의 민감도 분석: 시뮬레이션 연구)

  • Song, Hark-Soo;Lee, Sang-Hee
    • Korean Journal of Agricultural and Forest Meteorology
    • /
    • v.15 no.3
    • /
    • pp.178-185
    • /
    • 2013
  • Forest fires are expected to increase in severity and frequency under global climate change and thus better understanding of fire dynamics is critical for mitigation and adaptation. Researchers with different background, such as ecologists, physicists, and mathematical biologists, have developed various simulation models to reproduce forest fire spread dynamics. However, these models have limitations in the fire spreading because of the complicated factors such as fuel types, wind, and moisture. In this study, we suggested a simple model considering the wind effect and two different fuel types. The two fuels correspond to susceptible tree and resistant tree with different probabilities of transferring fire. The trees were randomly distributed in simulation space with a density ranging from 0.0 (low) to 1.0 (high). The susceptible tree had higher value of the probability than the resistant tree. Based on the number of burnt trees, we then carried out the sensitivity analysis to quantify how the forest fire patterns are affected by wind and tree density. The statistical analysis showed that the total tree density had greatest effect on the forest fire spreading and wind had the next greatest effect. The density of the susceptible tree was relatively lower factor affecting the forest fire. We believe that our model can be a useful tool to explore forest fire spreading patterns.

Economic Analysis on a PV System in an Apartment Complex (공동주택 태양광발전 시스템의 경제성 평가)

  • Kim, Jin-Hyung
    • Journal of Climate Change Research
    • /
    • v.1 no.2
    • /
    • pp.163-177
    • /
    • 2010
  • This study analyzes the economies of photovoltaic systems in an apartment complex of 1,185 households, in cases of feed-in tariff and subsidy for solar home program of the government. When including the revenue only from electricity sales, NPVs of subsidy and that of feed-in tariff are -560 million KRW and -87 million KRW respectively. With the avoided social cost included without the revenues from CERs, NPVs of subsidy and feed-in tariff are -556 million KRW and -84 million KRW respectively. With the revenues from CERs, NPV of subsidy is -526 million KRW and NPV of feed-in tariff is -54 million KRW. As results of sensitivity analysis based on the changes in capital costs and discount rates, while all scenarios with subsidy including the revenues from CERs are not commercially viable, all scenarios with feed-in tariff exclusive of the revenues from CERs are commercially viable when discount rate is less than 7.2% or capital cost is less than 6,840 thousand KRW/kW. In the cases that include the avoided social cost, while all scenarios with subsidy including the avoided social cost as well as the revenues from CERs are not commercially viable, all scenarios with feed-in tariff are commercially viable without the revenues from CERs when discount rate is less than 7.2% or capital cost is less than 6,856 thousand KRW/KW. The results indicate that the changes in discount rates do not influence the revenues from CERs, but the revenues from electricity sale. Considering that the number of apartment complex and the positive environmental and social benefits from PV system, government needs to promote its diffusion.

Effect of Carbon Dioxide Concentration, Temperature, and Relative Drought on Growth Responses and Yield in Spring Potato (Solanum tuberosum L.) (이산화탄소와 온도 그리고 한발 영향에 따른 감자의 생육과 수량반응)

  • Lee, Yun-Ho;Cho, Hyeoun-Suk;Kim, Jun-Hwan;Sang, Wan-Gyu;Shin, Pyong;Baek, Jae-Kyeong;Seo, Myung-Chul
    • Korean Journal of Agricultural and Forest Meteorology
    • /
    • v.20 no.2
    • /
    • pp.149-158
    • /
    • 2018
  • Agriculture is strongly influenced by climate change such as increased temperature and carbon dioxide ($CO_2$). This study describes the effects of climate change elevated $CO_2$, temperature, and relative drought on growth responses and yield in potato (Solanum tuberosum L.). The assessment was conducted for spring seasons in Soil-Plant-Atmosphere Research (SPAR) chamber at National Institute of Crop Science (NICS). Potatoes exhibit a positive response to $CO_2$ enrichment but water stress primarily reduces potato canopy and tuber yield. Elevated $CO_2$ and temperature increased both dry weight and tuber yield. Elevated $CO_2$ and temperature influenced SPAR 2 plants to a larger, and tuber increased yield up to 28% of than in SPAR 1(30-year average temperature at 450 ppm of $CO_2$). Our study findings indicate that tuber yield increase in potato under high $CO_2$ concentration was due to an increase in the size of individual tubers rather than in the number of the tubers per plant. On other hand, SPAR 3(30-year average temperature $+2.8^{\circ}C$ at 700 ppm of $CO_2$ under water stress) was lower than SPAR 2(30-year average temperature $+2.8^{\circ}C$ at 700 ppm of $CO_2$) nearly 56% of tuber yield due to drought. The results confirm potato drought sensitivity in terms of yield response. The experiment also showed that, in the conditions of climate change, climate change scenarios that improve cropping systems with potato.

A Sensitivity Analysis of JULES Land Surface Model for Two Major Ecosystems in Korea: Influence of Biophysical Parameters on the Simulation of Gross Primary Productivity and Ecosystem Respiration (한국의 두 주요 생태계에 대한 JULES 지면 모형의 민감도 분석: 일차생산량과 생태계 호흡의 모사에 미치는 생물리모수의 영향)

  • Jang, Ji-Hyeon;Hong, Jin-Kyu;Byun, Young-Hwa;Kwon, Hyo-Jung;Chae, Nam-Yi;Lim, Jong-Hwan;Kim, Joon
    • Korean Journal of Agricultural and Forest Meteorology
    • /
    • v.12 no.2
    • /
    • pp.107-121
    • /
    • 2010
  • We conducted a sensitivity test of Joint UK Land Environment Simulator (JULES), in which the influence of biophysical parameters on the simulation of gross primary productivity (GPP) and ecosystem respiration (RE) was investigated for two typical ecosystems in Korea. For this test, we employed the whole-year observation of eddy-covariance fluxes measured in 2006 at two KoFlux sites: (1) a deciduous forest in complex terrain in Gwangneung and (2) a farmland with heterogeneous mosaic patches in Haenam. Our analysis showed that the simulated GPP was most sensitive to the maximum rate of RuBP carboxylation and leaf nitrogen concentration for both ecosystems. RE was sensitive to wood biomass parameter for the deciduous forest in Gwangneung. For the mixed farmland in Haenam, however, RE was most sensitive to the maximum rate of RuBP carboxylation and leaf nitrogen concentration like the simulated GPP. For both sites, the JULES model overestimated both GPP and RE when the default values of input parameters were adopted. Considering the fact that the leaf nitrogen concentration observed at the deciduous forest site was only about 60% of its default value, the significant portion of the model's overestimation can be attributed to such a discrepancy in the input parameters. Our finding demonstrates that the abovementioned key biophysical parameters of the two ecosystems should be evaluated carefully prior to any simulation and interpretation of ecosystem carbon exchange in Korea.

Effect Assessment and Derivation of Ecological Effect Guideline on CO2-Induced Acidification for Marine Organisms (이산화탄소 증가로 인한 해수 산성화가 해양생물에 미치는 영향평가 및 생태영향기준 도출)

  • Gim, Byeong-Mo;Choi, Tae Seob;Lee, Jung-Suk;Park, Young-Gyu;Kang, Seong-Gil;Jeon, Ei-Chan
    • Journal of the Korean Society for Marine Environment & Energy
    • /
    • v.17 no.2
    • /
    • pp.153-165
    • /
    • 2014
  • Carbon dioxide capture and storage (CCS) technology is recognizing one of method responding the climate change with reduction of carbon dioxide in atmosphere. In Korea, due to its geological characteristics, sub-seabed geological $CO_2$ storage is regarded as more practical approach than on-land storage under the goal of its deployment. However, concerns on potential $CO_2$ leakage and relevant acidification issue in the marine environment can be an important subject in recently increasing sub-seabed geological $CO_2$ storage sites. In the present study effect data from literatures were collected in order to conduct an effect assessment of elevated $CO_2$ levels in marine environments using a species sensitivity distribution (SSD) various marine organisms such as microbe, crustacean, echinoderm, mollusc and fish. Results from literatures using domestic species were compared to those from foreign literatures to evaluate the reliability of the effect levels of each biological group and end-point. Ecological effect guidelines through estimating level of pH variation (${\delta}pH$) to adversely affect 5 and 50% of tested organisms, HC5 and HC50, were determined using SSD of marine organisms exposed to the $CO_2$-induced acidification. Estimated HC5 as ${\delta}pH$ of 0.137 can be used as only interim quality guideline possibly with adequate assessment factor. In the future, the current interim guideline as HC5 of ${\delta}pH$ in this study will look forward to compensate with supplement of ecotoxicological data reflecting various trophic levels and indigenous species.

Variation in Heading States of Korean Winter Wheat under Winter Temperature Rise of Toluca in Mexico (멕시코 톨루카 지역의 겨울 기온상승에 따른 한국 밀 품종의 출수생태 변이)

  • Park, TaeIl;Chung, Uran
    • Korean Journal of Agricultural and Forest Meteorology
    • /
    • v.18 no.3
    • /
    • pp.99-108
    • /
    • 2016
  • The shuttle breeding of Korean winter wheat has been able to develop high-yielding and day-length-intensive varieties with a wide range of ecologic adoption. However, the phenology of winter wheat has been changed due to recent rises in the winter temperature of Toluca and increasing frequency of high temperatures. We defined two wheat groups (group II and III) with vernalization and evaluated the impact of cold exposure duration and heading ratio due to changes in sowing dates by measuring changes in cold exposure duration and corresponding heading states of each group. The wheat cultivars were sown on three dates in two years. The cold exposure requirement of wheat sown on 6 November 2013 was unfulfilled. The cold exposure requirement of wheat sown on 22 November and 6 December 2013 was fulfilled. However, in 2014, the cold exposure requirement of wheat sown on 5 and 20 November was fulfilled, but that of wheat sown on 5 December was unfulfilled. The differences for the two early November sowings were because winter temperature rises, which caused high temperatures in 2013, whereas early November 2014 saw normal temperatures for the area. The heading ratio of group II did not show a clear difference among the three sowing dates, while the heading ratio of group III was reduced by about half. This implies that the efficiency of shuttle breeding of group III will be high since it showed strong sensitivity to changes in sowing dates. We calculated future sowing dates of each group under near future climate scenarios; the future available sowing dates of group II were projected, but the dates of group III were never estimated in the temperature rise scenario in Toluca. Our findings suggest that change of sowing dates should be considered in the strategy for shuttle breeding of Korean winter wheat.

Analysing the Relationship Between Tree-Ring Growth of Quercus acutissima and Climatic Variables by Dendroclimatological Method (연륜기후학적 방법에 의한 상수리나무의 연륜생장과 기후인자와의 관계분석)

  • Moon, Na Hyun;Sung, Joo Han;Lim, Jong Hwan;Park, Ko Eun;Shin, Man Yong
    • Korean Journal of Agricultural and Forest Meteorology
    • /
    • v.17 no.2
    • /
    • pp.93-101
    • /
    • 2015
  • This study was conducted to analyze the relationship between tree-ring growth of Quercus acutissima and climatic variables by dendroclimatological method. Annual tree-ring growth data of Quercus acutissima collected by the $5^{th}$ National Forest Inventory (NFI5) were organized to analyze the spatial distribution of the species growth pattern. To explain the relationship between tree-ring growth of Quercus acutissima and climatic variables, monthly temperature and precipitation data from 1950 to 2010 were compared with tree-ring growth data for each county. When tree-ring growth data were analyzed through cluster analysis based on similarity of climatic conditions, four clusters were identified. In addition, index chronology of Quercus acutissima for each cluster was produced through cross-dating and standardization procedures. The adequacy of index chronologies was tested using basic statistics such as mean sensitivity, auto correlation, signal to noise ratio, and expressed population signal of annual tree-ring growth. Response function analysis was conducted to reveal the relationship between tree-ring growth and climatic variables for each cluster. The results of this study are expected to provide valuable information necessary for estimating local growth characteristics of Quercus acutissima and for predicting changes in tree growth patterns caused by climate change.