• 제목/요약/키워드: Climate conditions

검색결과 1,425건 처리시간 0.025초

지역별 기후변화에 따른 토마토 황화잎말림병 피해 분석 (An Analysis of TYLCV Damages under Regional Climate Changes)

  • 윤지윤;김소윤;김관수;김홍석;안동환
    • 농촌계획
    • /
    • 제21권4호
    • /
    • pp.35-43
    • /
    • 2015
  • The purpose of the research is to analyze damages of TYLCV (Tomato Yellow Leaf Curl Virus) in the context of climate changes and to find the spatial distribution of the damages and characteristics of regions. A TYLCV is generally known for a plant disease related to temperature. Its occurrence rate increases when temperature rises. This disease first occurred in 2008 and rapidly spread nationwide. Due to the spread of a TYLCV, a number of Tomato farms in Korea were damaged severely. To analyze damages of the pest in the context of climate changes, this research estimated production loss under the current situation and RCP scenarios. Additionally, Hot Spot Analysis, LISA, and Cluster analysis were conducted to find spatial distribution and properties of largely damaged regions under RCP scenarios. The results explained that additional production loss was estimated differently by regions with the same temperature rising scenario. Also, largely damaged regions are spatially clustered and factors causing large damages were different across regional cluster groups. It means that certain regions can be damaged more than others by diseases and pests. Furthermore, pest management policy should reflect the properties of each region such as climate conditions, cultivate environment and production technologies. The findings from this research can be utilized for developing rural management plans and pest protection policies.

몬순기후형 중온 개질 아스팔트 혼합물의 역학적 물성 평가 연구 (Evaluation on Mechanical Properties of Polymer-Modified Warm-Mix Asphalt Mixtures for Monsoon Climate Regions)

  • 이강훈
    • 한국도로학회논문집
    • /
    • 제19권5호
    • /
    • pp.131-141
    • /
    • 2017
  • PURPOSES : The main distress of asphalt pavements in monsoon climate regions are caused by water damage and plastic deformation due to repeated rain season and increased heavy vehicle traffic volume. In this study, the mechanical properties of polymer-modified warm mix asphalt (PWMA) materials are evaluated to use in monsoon climate regions such as Indonesia. METHODS : Comprehensive laboratory tests are conducted to evaluate moisture resistance and permanent deformation resistance for three different asphalt mixtures such as the Indonesian conventional hot-mix asphalt (HMA) mixture, the polymer-modified asphalt mixture, and the polymer-modified warm mix asphalt (PWMA) mixture. Dynamic immersion test and indirect tensile strength ratio test are performed to evaluate moisture resistance. The wheel tracking test is performed to evaluate rutting resistance. Additionally, the Hamburg wheel tracking test is performed to evaluate rutting and moisture resistances simultaneously. RESULTS :The dynamic immersion test results indicate that the PWMA mixture shows the highest resistance to moisture. The indirect tensile strength ratio test indicates that TSR values of PWMA mixture, Indonesian PMA mixture, and Indonesian HMA mixture show 87.2%, 84.1%, and 67.9%, respectively. The wheel tracking test results indicate that the PWMA mixture is found to be more resistant to plastic deformation than the Indonesian PMA. The dynamic stability values are 2,739 times/mm and 3,150 times/mm, respectively. Moreover, the Hamburg wheel tracking test results indicate that PWMA mixture is more resistant to plastic deformation than Indonesian PMA and HMA mixtures. CONCLUSIONS :Based on limited laboratory test results, it is concluded that rutting resistance and moisture susceptibility of the PWMA mixture is superior to Indonesian HMA and Indonesian PMA mixtures. It is postulated that PWMA mixture would be suitable for climate and traffic conditions in Indonesia.

기후변화에 따른 유역의 물수지 변화 (Water Balance Change of Watershed by Climate Change)

  • 양해근
    • 대한지리학회지
    • /
    • 제42권3호
    • /
    • pp.405-420
    • /
    • 2007
  • 본 연구에서는 기후변화에 따른 수문요소의 변동을 파악하기 위해 섬진강댐과 소양강댐 유역의 물순환 과정에 미치는 영향을 분석 평가하였다. 그 결과를 정리하자면 다음과 같다. 먼저 지난 30년간 기온과 강수량은 점차 증가하는 경향이 뚜렷하게 나타나고 있으나 증발산량은 지역에 따라 상이하게 나타나고 있으며 연평균 기온상승과 연증발산량의 증가가 정의 관계에 있다고 볼 수 없었다. Penman-FAO24법에 기초한 기후학적 물수지방법과 실측값은 서로 유의한 것으로 밝혀져 국내 물수지 연구에 사용가능한 것으로 사료된다. 한편 연강수량 증대에 따라 연유출량의 증가는 인정되나 연유출률에 대한 변동은 실측값과 계산값 간의 변동이 상이하게 나타나고 있어 기후변화의 영향이 유역의 유출특성에 크게 영향을 미치고 있다고 단정하기 어렵다. 기후변화에 의한 수자원관리와 재난관리에 큰 어려움이 예상되고 있다는 것은 이미 널리 알려진 사실이다. 이에 대한 적절한 대응방안을 강구하기 위해서는 유역의 기후학적 조건과 수문학적 변동성에 대한 깊은 이해가 필요하며 보다 조밀한 수문관측망의 구축과 신뢰도 높은 자료의 축적이 전제되어야 할 것이다.

Potential impact of climate change on plant invasion in the Republic of Korea

  • Adhikari, Pradeep;Jeon, Ja-Young;Kim, Hyun Woo;Shin, Man-Seok;Adhikari, Prabhat;Seo, Changwan
    • Journal of Ecology and Environment
    • /
    • 제43권4호
    • /
    • pp.352-363
    • /
    • 2019
  • Background: Invasive plant species are considered a major threat to biodiversity, ecosystem functioning, and human wellbeing worldwide. Climatically suitable ranges for invasive plant species are expected to expand due to future climate change. The identification of current invasions and potential range expansion of invasive plant species is required to plan for the management of these species. Here, we predicted climatically suitable habitats for 11 invasive plant species and calculated the potential species richness and their range expansions in different provinces of the Republic of Korea (ROK) under current and future climate change scenarios (RCP 4.5 and RCP 8.5) using the maximum entropy (MaxEnt) modeling approach. Results: Based on the model predictions, areas of climatically suitable habitats for 90.9% of the invasive plant species are expected to retain current ecological niches and expand to include additional climatically suitable areas under future climate change scenarios. Species richness is predicted to be relatively high in the provinces of the western and southern regions (e.g., Jeollanam, Jeollabuk, and Chungcheongnam) under current climatic conditions. However, under future climates, richness in the provinces of the northern, eastern, and southeastern regions (e.g., Seoul, Incheon, Gyeonggi, Gyeongsangnam, Degue, Busan, and Ulsan) is estimated to increase up to 292%, 390.75%, and 468.06% by 2030, 2050, and 2080, respectively, compared with the current richness. Conclusions: Our study revealed that the rates of introduction and dispersion of invasive plant species from the western and southern coasts are relatively high and are expanding across the ROK through different modes of dispersion. The negative impacts on biodiversity, ecosystem dynamics, and economy caused by invasive plant species will be high if preventive and eradication measures are not employed immediately. Thus, this study will be helpful to policymakers for the management of invasive plant species and the conservation of biodiversity.

미래 기후·수문 정보에 따른 국내 가뭄의 전망 및 분석 (Projection and Analysis of Drought according to Future Climate and Hydrological Information in Korea)

  • 손경환;배덕효;안재현
    • 한국수자원학회논문집
    • /
    • 제47권1호
    • /
    • pp.71-82
    • /
    • 2014
  • 본 연구에서는 기후변화에 따른 미래 기후, 수문정보로부터 가뭄전망 정보를 생산 및 분석하고자 한다. 미래의 불확실성을 고려하기위해 3개 GCMs와 3개 수문모형을 이용하였다. 강수량, 유출량 및 토양수분량으로부터 기상학적, 수문학적 및 농업적 가뭄지수로 분류되는 SPI, SRI 및 SSI를 산정하였다. Mann-Kendall test 결과, 미래 가뭄의 경향은 봄철 및 겨울철에 크게 증가할 것으로 전망되었으며, 가뭄발생빈도의 경우 SRI 및 SSI가 SPI 보다 더 높게 나타났다. 미래 기후변화가 기상학적 가뭄 보다는 수문학적 및 농업적 가뭄에 큰 영향을 미치는 것으로 확인되었다.

학교분위기가 중학생의 또래폭력 피해경험에 미치는 영향 (The Effects of School Climate on Peer Victimization for Junior High School Students)

  • 김은영
    • 한국아동복지학
    • /
    • 제26호
    • /
    • pp.87-111
    • /
    • 2008
  • 본 연구는 중학생의 또래폭력피해 실태를 살펴보고, 우리나라에서 지금까지 진행되지 않은 또래폭력에 영향을 미치는 학교분위기의 다양한 요인을 파악하고 그 상대적인 영향력을 밝히는 것이다. 연구의 목적을 위해 서울지역에 있는 11개의 중학교를 편의표집 하여 선정된 중학생들이며 최종적으로 1,204부의 설문조사지를 분석하였다. 분석방법으로 빈도분석, 기술통계, 피어슨의 상관분석, 위계적 회귀분석을 사용하였다. 분석결과, 중학생의 또래폭력피해 행위 중 언어폭력의 피해행위가 상대적으로 높게 나타났다. 2단계로 구분하여 위계적 회귀분석을 실시하였다. 1단계 모델보다 2단계 모델에서는 설명 변량이 19.6% 증가하였다. 또래폭력 피해 행위에 교사와 학생간의 상호작용(${\beta}=.130$), 학교건물의 유지보수(${\beta}=.067$), 교내환경의 안전성(${\beta}=.331$)의 변수들과 통제변수 중 성별과 경제력이 유의미한 변수였으며 전체모델의 23.0%를 설명하고 있었다. 이와 같은 연구결과에 근거하여 학교분위기를 개선시키기 위한 실천적, 정책적 제언들을 제시하였다.

Effect of Sirikit Dam Operation Improvement on water shortage situations due to the land use and climate changes from the Nan Basin

  • Koontanakulvong, Sucharit;Suthidhummajit, Chokchai
    • 한국수자원학회:학술대회논문집
    • /
    • 한국수자원학회 2015년도 학술발표회
    • /
    • pp.232-232
    • /
    • 2015
  • Land use and climate changes are the important factors to determine the runoff and sediment loads from the watershed. The changes also affected to runoff volume/pattern to the dam operation and may cause flood and drought situations in the downstream area. Sirikit Dam is one of the biggest dams in Thailand which cover about 25 % of the runoff into the Central Plain where the Bangkok Capital is located. The study aims to determine the effect of land use change to the runoff/sediment volume pattern and the rainfall-runoff-sediment relationship in the different land use type. Field measurements of the actual rainfall, runoff and sediment in the selected four sub-basins with different type of land use in the Upper Nan Basin were conducted and the runoff ratio coefficients and sediment yield were estimated for each sub-basin. The effect of the land use change (deforestation) towards runoff/sediment will be investigated. The study of the climate change impact on the runoff in the future scenarios was conducted to project the change of runoff volume/pattern into the Sirikit Dam. The improvement of the Sirikit Dam operation rule was conducted to reduce the weakness of the existing operation rules after Floods 2011. The newly proposed dam operation rule improvement will then be evaluated from the water shortage situations in the downstream of Sirikit Dam under various conditions of changes of both land use and climate when compared with the situations based on the existing reservoir operation rules.

  • PDF

Predicting the potential distribution of the subalpine broad-leaved tree species, Betula ermanii Cham. under climate change in South Korea

  • Shin, Sookyung;Dang, Ji-Hee;Kim, Jung-Hyun;Han, Jeong Eun
    • Journal of Species Research
    • /
    • 제10권3호
    • /
    • pp.246-254
    • /
    • 2021
  • Subalpine and alpine ecosystems are especially vulnerable to temperature increases. Betula ermanii Cham. (Betulaceae) is a dominant broad-leaved tree species in the subalpine zone and is designated as a 'Climate-sensitive Biological Indicator Species' in South Korea. This study aimed to predict the potential distribution of B. ermanii under current and future climate conditions in South Korea using the MaxEnt model. The species distribution models showed an excellent fit (AUC=0.99). Among the climatic variables, the most critical factors shaping B. ermanii distribution were identified as the maximum temperature of warmest month (Bio5; 64.8%) and annual mean temperature (Bio1; 20.3%). Current potential habitats were predicted in the Baekdudaegan mountain range and Mt. Hallasan, and the area of suitable habitat was 1531.52 km2, covering 1.57% of the Korean Peninsula. With global warming, future climate scenarios have predicted a decrease in the suitable habitats for B. ermanii. Under RCP8.5-2070s, in particular, habitat with high potential was predicted only in several small areas in Gangwon-do, and the total area suitable for the species decreased by up to 97.3% compared to the current range. We conclude that the dominant factor affecting the distribution of B. ermanii is temperature and that future temperature rises will increase the vulnerability of this species.

3D Numerical Modelling of Water Flow and Salinity Intrusion in the Vietnamese Mekong Delta

  • Lee, Taeyoon;Nguyen, Van Thinh
    • 한국수자원학회:학술대회논문집
    • /
    • 한국수자원학회 2021년도 학술발표회
    • /
    • pp.207-207
    • /
    • 2021
  • The Vietnamese Mekong Delta(VMD) covers an area of 62,250 km2 in the lowest basin of the Mekong Delta where more than half of the country's total rice production takes place. In 2016, an estimated 1.29 million tonnes of Vietnam's rice were lost to the country's biggest drought in 90 year and particularly in VMD, at least 221,000 hectares of rice paddies were hit by the drought and related saltwater intrusion from the South China Sea. In this study, 3D numerical simulations using Delft3D hydrodynamic models with calibration and validation process were performed to examine flow characteristics, climate change scenarios, water level changes, and salinity concentrations in the nine major estuaries and coastal zones of VMD during the 21st century. The river flows and their interactions with ocean currents were modeled by Delft3D and since the water levels and saltwater intrusion in the area are sensitive to the climate conditions and upstream dam operations, the hydrodynamic models considered discharges from the dams and climate data provided by the Coupled Model Intercomparison Project Phase 6(CMIP6). The models were calibrated and verified using observational water levels, salinity distribution, and climate change data and scenarios. The results agreed well with the observed data during calibration and validation periods. The calibrated models will be used to make predictions about the future salinity intrusion events, focusing on the impacts of sea level rise due to global warming and weather elements.

  • PDF

SSP 시나리오를 고려한 농업용 저수지의 이수측면 잠재영향평가 (Assessment of the Potential Impact of Climate Change on the Drought in Agricultural Reservoirs under SSP Scenarios)

  • 김시호;장민원;황세운
    • 한국농공학회논문집
    • /
    • 제66권2호
    • /
    • pp.35-52
    • /
    • 2024
  • This study conducted an assessment of potential impacts on the drought in agricultural reservoirs using the recently proposed SSP (Shared Socioeconomic Pathways) scenarios by IPCC (Intergovernmental Panel on Climate Change). This study assesses the potential impact of climate change on agricultural water resources and infrastructure vulnerability within Gyeongsangnam-do, focusing on 15 agricultural reservoirs. The assessment was based on the KRC (Korea Rural Community Corporation) 1st vulnerability assessment methodology using RCP scenarios for 2021. However, there are limitations due to the necessity for climate impact assessments based on the latest climate information and the uncertainties associated with using a single scenario from national standard scenarios. Therefore, we applied the 13 GCM (General Circulation Model) outputs based on the newly introduced SSP scenarios. Furthermore, due to difficulties in data acquisiton, we reassessed potential impacts by redistributing weights for proxy variables. As a main result, with lower future potential impacts observed in areas with higher precipitation along the southern coast. Overall, the potential impacts increased for all reservoirs as we moved into the future, maintaining their relative rankings, yet showing no significant variability in the far future. Although the overall pattern of potential impacts aligns with previous evaluations, reevaluation under similar conditions with different spatial resolutions emphasizes the critical role of meteorological data spatial resolution in assessments. The results of this study are expected to improve the credibility and accuracy formulation of vulnerability employing more scientific predictions.