• 제목/요약/키워드: Climate Zone

검색결과 387건 처리시간 0.029초

대조차 만리포 해안의 지상 LiDAR와 MBES를 이용한 정밀 지형/수심 측량 및 조간대 접합을 통한 정밀 지형도 작성 (Construction of High-Resolution Topographical Map of Macro-tidal Malipo beach through Integration of Terrestrial LiDAR Measurement and MBES Survey at inter-tidal zone)

  • 심재설;김진아;김선정;김상익
    • 한국해안·해양공학회논문집
    • /
    • 제22권1호
    • /
    • pp.58-66
    • /
    • 2010
  • 본 논문에서는 지상 LiDAR 및 MBES(다중빔 음향측심기)를 이용하여 정밀 지형 및 수심측량을 실시하였고, 조간대 영역의 육도-해도 접합을 통하여 대조차 해안인 만리포에 대한 정밀 지형도를 작성하였다. 제한된 시간내에 조간대 영역의 충분한 지형정보 획득을 위하여 간조시 지상 LiDAR 및 DGPS를 차량지붕에 탑재하여 이동 정지 스캐닝의 해변 전체의 지형정보를 획득하였고, 이와 동시에 만조시 MBES를 통하여 수심측량을 실시하였으며 조위계 설치와 목측을 통한 조위관측의 병행을 통하여 수심보정자료 및 만리포의 평균해면 추산자료로 사용하였다. 조간대 정합을 위해 지형 및 수심자료의 수직좌표계 기준면은 인천 평균해면으로 단일화하였으며, 조간대 평균 중첩오차는 약 2~6 cm 이내로 나타났다. 또한 지상 LiDAR 자료의 정확도 검증을 위해 RTK-DGPS 측량을 동시에 실시하여 수직좌표값을 비교한 결과 평균 제곱근 오차가 약 4~7 cm 이내로 나타났다. 정밀지형도 작성은 GIS 기반 자료처리를 통하여 50 cm 해상도를 갖는 수치표고자료로 생산하였으며, 이는 현재 연안지역 침수범람 예측을 위한 폭풍해일 침수범람 예측모델의 정밀 입력자료로 사용되고 있다. 또한 장기간에 걸친 주기적 측량 자료와 측량시의 인위적 해변 변화량 및 해양환경정보를 함께 고려하여 3차원 공간분석을 실시한다면 침 퇴적양의 정확한 산출을 통하여 연안 모니터링에도 효과적으로 활용될 수 있을 것이다.

직립방파제의 케이슨 활동에 미치는 기후변화영향에 대한 수심의 효과 (Influence of Water Depth on Climate Change Impacts on Caisson Sliding of Vertical Breakwater)

  • 김승우;김소연;서경덕
    • 한국해안·해양공학회논문집
    • /
    • 제24권3호
    • /
    • pp.179-188
    • /
    • 2012
  • 기후변화가 구조물의 안정성에 미치는 영향을 분석하기 위해 여러 수심에서 가상적으로 설계된 직립방파제의 성능을 평가하였다. 성능평가에서는 기후변화영향인 해수면 상승과 파고 증가를 고려한 성능설계법이 사용되었다. 성능설계법의 파랑변형 계산과정에서 많은 시간이 요구되는 문제를 극복하기 위해 범용 SWAN 모형에 인공신경망을 결합하였다. 학습된 인공신경망에 심해유의파고와 심해주파향 그리고 조위가 입력되면 구조물 위치에서 유의파고와 주파향이 신속하게 계산된다. 전반적으로 구조물의 안정성은 기후변화영향으로 감소하였지만 수심에 따라 서로 다른 경향을 보였다. 쇄파대 밖에서는 수심이 증가할수록 해수면 상승의 영향은 감소하고 파고 증가의 영향은 증가하였다. 한편, 쇄파대 내에서는 수심이 감소할수록 파고 증가와 해수면 상승의 영향 모두 감소하였다. 하지만 파고 증가의 영향이 해수면 상승의 영향보다 컸다. 이와 같은 결과를 반영하여 직립방파제의 유지보수 및 보강 대책을 수립해야 할 것이다.

An experimental performance analysis of a cold region stationary photovoltaic system

  • Choi, Wongyu;Warren, Ryan D.;Pate, Michael B.
    • Advances in Energy Research
    • /
    • 제4권1호
    • /
    • pp.1-28
    • /
    • 2016
  • A grid-connected photovoltaic (PV) system comprised of multicrystalline silicon (mc-Si) modules was installed in a cold climate region in the U.S. This roof-mounted stationary PV system is a real-world application of PV for building energy generation in International Energy Conservation Code (IECC) Climate Zone 5 (and possibly similar climate zones such as 6, 7 and 8), and it served the purposes of research, demonstration, and education. The importance of this work is highlighted by the fact that there has been less emphasis on solar PV system in this region of the U.S. because of climate and latitude challenges. The system is equipped with an extensive data acquisition system capable of collecting performance and meteorological data while visually displaying real-time and historical data through an interactive online interface. Experimental data was collected and analyzed for the system over a one-year period with the focus of the study being on measurements of power production, energy generation, and efficiency. The annual average daily solar insolation incident upon the array was found to be $4.37kWh/m^2$. During the first year of operation, the PV system provided 5,801 kWh (1,264 kWh/kWp) of usable AC electrical energy, and it was found to operate at an annual average conversion efficiency and PR of 10.6 percent and 0.79, respectively. The annual average DC to AC conversion efficiency of the inverter was found to be 94 percent.

지형적 특성을 고려한 우리나라의 농업기후지대 구분 (Classification of Agroclimatic Zones Considering the Topography Characteristics in South Korea)

  • 김용석;심교문;정명표;최인태;강기경
    • 한국기후변화학회지
    • /
    • 제7권4호
    • /
    • pp.507-512
    • /
    • 2016
  • This study was conducted to classify agroclimatic zones in South Korea. To classify the agroclimatic zones, such climatic factors as amount of rainfall from April to May, amount of rainfall in October, monthly average air temperature in January, monthly average air temperature from April to May, monthly average air temperature from April to September, monthly average air temperature from December to March, monthly minimum air temperature in January, monthly minimum air temperature from April to May, Warmth Index were considered as major influencing factors on the crop growth. Climatic factors were computed from monthly air temperature and precipitation of climatological normal year (1981~2010) at 1 km grid cell estimated from a geospatial climate interpolation method. The agroclimatic zones using k-means cluster analysis method were classified into 6 zones.

Potential Influence of Climate Change on Shellfish Aquaculture System in the Temperate Region

  • Jo, Qtae;Hur, Young Baek;Cho, Kee Chae;Jeon, Chang Young;Lee, Deok Chan
    • 한국패류학회지
    • /
    • 제28권3호
    • /
    • pp.277-291
    • /
    • 2012
  • Aquaculture is challenged by a number of constraints with future efforts towards sustainable production. Global climate change has a potential damage to the sustainability by changing environmental surroundings unfavorably. The damaging parameters identified are water temperature, sea level, surface physical energy, precipitation, solar radiation, ocean acidification, and so on. Of them, temperature, mostly temperature elevation, occupies significant concern among marine ecologists and aquaculturists. Ocean acidification particularly draws shellfish aquaculturists' attention as it alters the marine chemistry, shifting the equilibrium towards more dissolved CO2 and hydrogen ions ($H^+$) and thus influencing signaling pathways on shell formation, immune system, and other biological processes. Temperature elevation by climate change is of double-sidedness: it can be an opportunistic parameter besides being a generally known damaging parameter in aquaculture. It can provide better environments for faster and longer growth for aquaculture species. It is also somehow advantageous for alleviation of aquaculture expansion pressure in a given location by opening a gate for new species and aquaculture zone expansion northward in the northern hemisphere, otherwise unavailable due to temperature limit. But in the science of climate change, the ways of influence on aquaculture are complex and ambiguous, and hence are still hard to identify and quantify. At the same time considerable parts of our knowledge on climate change effects on aquaculture are from the estimates from data of fisheries and agriculture. The consequences may be different from what they really are, particularly in the temperature region. In reality, bivalves and tunicates hung or caged in the longline system are often exposed to temperatures higher than those they encounter in nature, locally driving the farmed shellfish into an upper tolerable temperature extreme. We review recent climate change and following environment changes which can be factors or potential factors affecting shellfish aquaculture production in the temperate region.

도시공원녹지의 생태성 및 기후변화 대응성 평가 기초 연구 (A Preliminary Study on Assessment of Urban Parks and Green Zones of Ecological Attributes and Responsiveness to Climate Change)

  • 성현찬;황소영
    • 한국환경복원기술학회지
    • /
    • 제16권3호
    • /
    • pp.107-117
    • /
    • 2013
  • Problems in regard of ecological stability of urban ecosystem ensue from climate change and urbanization. Particularly, urban ecological conditions are deteriorating both quantitatively and qualitatively to a great extent. The present study aims to assess the current condition of selected sites (i. e. urban green zones and parks) in terms of preset assessment components; to find out problems and relevant solutions to improve the quality and quantity of parks and green zones; and ultimately to suggest some measures applicable to coping with climate change as well as to securing the ecological attributes of urban green zones and parks. According to the findings of this study, from quantitative perspectives, ecological attributes and responsiveness to climate change are high on account of the large natural-soil area(80%). By contrast, from qualitative perspectives including the planting structure (1 layer: 47%), the percentage of bush area(17%), the connectivity with surrounding green zones (independent types: 44%), the wind paths considered (5.6%), the tree species with high carbon absorption rates (20%), water cycles (17%), energy (8%) and carbon storage capacities(61%), ecological attributes and responsiveness to climate change were found very low. These findings suggest that the ecological values of urban parks and green zones should be improved in the future by conserving their original forms, securing natural-soil grounds and employing multi-layered planting structures and water bodies, and that responsiveness to climate change should be enhanced by planting tree species with high carbon storage capacities and obtaining detention ponds. In sum, robust efforts should be exerted in the initial planning stages, and sustained, to apply the methodology of green-zone development along with securing ecological attributes and responsiveness to climate change.

경기북부지역 정밀 수치기후도 제작 및 활용 - I. 수치기후도 제작 (Development and Use of Digital Climate Models in Northern Gyunggi Province - I. Derivation of DCMs from Historical Climate Data and Local Land Surface Features)

  • 김성기;박중수;이은섭;장정희;정유란;윤진일
    • 한국농림기상학회지
    • /
    • 제6권1호
    • /
    • pp.49-60
    • /
    • 2004
  • Northern Gyeonggi Province(NGP), consisting of 3 counties, is the northernmost region in South Korea adjacent to the de-militarized zone with North Korea. To supplement insufficient spatial coverage of official climate data and climate atlases based on those data, high-resolution digital climate models(DCM) were prepared to support weather- related activities of residents in NGP Monthly climate data from 51 synoptic stations across both North and South Korea were collected for 1981-2000. A digital elevation model(DEM) for this region with 30m cell spacing was used with the climate data for spatially interpolating daily maximum and minimum temperatures, solar irradiance, and precipitation based on relevant topoclimatological models. For daily minimum temperature, a spatial interpolation scheme accommodating the potential influences of cold air accumulation and the temperature inversion was used. For daily maximum temperature estimation, a spatial interpolation model loaded with the overheating index was used. Daily solar irradiances over sloping surfaces were estimated from nearby synoptic station data weighted by potential relative radiation, which is the hourly sum of relative solar intensity. Precipitation was assumed to increase with the difference between virtual terrain elevation and the DEM multiplied by an observed rate. Validations were carried out by installing an observation network specifically for making comparisons with the spatially estimated temperature pattern. Freezing risk in January was estimated for major fruit tree species based on the DCMs under the recurrence intervals of 10, 30, and 100 years, respectively. Frost risks at bud-burst and blossom of tree flowers were also estimated for the same resolution as the DCMs.

Northern distribution limits and future suitable habitats of warm temperate evergreen broad-leaved tree species designated as climate-sensitive biological indicator species in South Korea

  • Sookyung, Shin;Jung-Hyun, Kim;Duhee, Kang;Jin-Seok, Kim;Hong Gu, Kang;Hyun-Do, Jang;Jongsung, Lee;Jeong Eun, Han;Hyun Kyung, Oh
    • Journal of Ecology and Environment
    • /
    • 제46권4호
    • /
    • pp.292-303
    • /
    • 2022
  • Background: Climate change significantly influences the geographical distribution of plant species worldwide. Selecting indicator species allows for better-informed and more effective ecosystem management in response to climate change. The Korean Peninsula is the northernmost distribution zone of warm temperate evergreen broad-leaved (WTEB) species in Northeast Asia. Considering the ecological value of these species, we evaluated the current distribution range and future suitable habitat for 13 WTEB tree species designated as climate-sensitive biological indicator species. Results: Up-to-date and accurate WTEB species distribution maps were constructed using herbarium specimens and citizen science data from the Korea Biodiversity Observation Network. Current northern limits for several species have shifted to higher latitudes compared to previous records. For example, the northern latitude limit for Stauntonia hexaphylla is higher (37° 02' N, Deokjeokdo archipelago) than that reported previously (36° 13' N). The minimum temperature of the coldest month (Bio6) is the major factor influencing species distribution. Under future climate change scenarios, suitable habitats are predicted to expand toward higher latitudes inland and along the western coastal areas. Conclusions: Our results support the suitability of WTEB trees as significant biological indicators of species' responses to warming. The findings also suggest the need for consistent monitoring of species distribution shifts. This study provides an important baseline dataset for future monitoring and management of indicator species' responses to changing climate conditions in South Korea.

남한 온량지수의 변화와 단감의 안전재배에 관한 연구 (Assessment of Safety Cultivation Zones for Sweet Persimmon by Warmth Index Change in South Korea)

  • 심교문;김용석;정명표;최인태;허지나
    • 한국기후변화학회지
    • /
    • 제5권4호
    • /
    • pp.367-374
    • /
    • 2014
  • The monthly mean air temperature datasets of 61 stations in South Korea from 1973 to 2012 were collected to calculate trends in the warmth index (WI) and to analyze the potential enlargement of safety cultivation limit for sweet persimmon. The WI averaged over the last 40 years was 104.1 (℃·Month) at 61 stations, with the highest at Seogwipo station (WI=137.9) and the lowest at Daegwallyeong station (WI=60.9). It has increased by 1.8 (℃·Month) per 10 years over the last 40 years, with the highest in the year 1994 (WI=112.0) and the lowest in the year 1976 (WI=94.7). When the possible stations for sweet persimmon cultivation were classified by the basis on WI≥100, 38 out of the 61 weather stations were included in the safety cultivation zone for sweet persimmon for the last 40 years. On the other hand, the number of weather stations within the safety cultivation zones for sweet persimmon for the last 10 years (from 2003 to 2012) were 47 by adding additional 9 stations (Socho, Wonju, Chungju, Seosan, Uljin, Yangpyeong, Icheon, Cheonan, and Geochang stations). A further study of the climate conditions and soil characteristics is required for a better assessment of the safety cultivation zones for sweet persimmon.

진양호 환경요인과 동물플랑크톤 군집 동태 (Seasonal Changes of Zooplankton Distribution with Environmental Factors in Lake Jinyang)

  • 윤종수;정현기;권영호;신찬기;황동진
    • 환경위생공학
    • /
    • 제23권4호
    • /
    • pp.45-54
    • /
    • 2008
  • Our study indicates the zooplankton abundance with characteristics of water column and the vertical distribution in Lake Jinyang, South Korea. Seasonal changes of zooplankton community are determined by environmental parameters like water temperature, pH, dissolved oxygen, suspended solids and chlorophyll a. In lake Jinyang, this study showed that the zooplankton abundance in transition zone(St.1, St.2) was higher density than in lacustrine zone(St.3). Rotifers were dominant zooplankton and among them, Polyarthra spp., Keratella spp. and Nauplli(Copepoda) were common. But Cladoceran showed the low density. During survey period, zooplankton abundance with vertical distribution in surface layer(epilimnion) was higher than in bottom layer(hypolimninon). Zooplankton densities in Surface and middle layer showed positive relationship with water temperature and the densities in bottom layer(hypolimnion) showed positive relationship with chlorophyll a. Our assumption in spite of the short term study are supported by the facts that increase of temperature driven by climate change more maintains the thermocline duration by the summer temperature stratification. Thus the results suggest that the climate changes are an important source of changing zooplankton community feeding phytoplankton. So the zooplankton should be monitoring by the ecological management of Lake Jinyang to cope with climate changes like flood plain or drought.