DOI QR코드

DOI QR Code

Potential Influence of Climate Change on Shellfish Aquaculture System in the Temperate Region

  • Jo, Qtae (Southeast Sea Fisheries Research Institute, NFRDI) ;
  • Hur, Young Baek (Southeast Sea Fisheries Research Institute, NFRDI) ;
  • Cho, Kee Chae (Southeast Sea Fisheries Research Institute, NFRDI) ;
  • Jeon, Chang Young (Southeast Sea Fisheries Research Institute, NFRDI) ;
  • Lee, Deok Chan (Southeast Sea Fisheries Research Institute, NFRDI)
  • Received : 2012.06.18
  • Accepted : 2012.06.24
  • Published : 2012.09.30

Abstract

Aquaculture is challenged by a number of constraints with future efforts towards sustainable production. Global climate change has a potential damage to the sustainability by changing environmental surroundings unfavorably. The damaging parameters identified are water temperature, sea level, surface physical energy, precipitation, solar radiation, ocean acidification, and so on. Of them, temperature, mostly temperature elevation, occupies significant concern among marine ecologists and aquaculturists. Ocean acidification particularly draws shellfish aquaculturists' attention as it alters the marine chemistry, shifting the equilibrium towards more dissolved CO2 and hydrogen ions ($H^+$) and thus influencing signaling pathways on shell formation, immune system, and other biological processes. Temperature elevation by climate change is of double-sidedness: it can be an opportunistic parameter besides being a generally known damaging parameter in aquaculture. It can provide better environments for faster and longer growth for aquaculture species. It is also somehow advantageous for alleviation of aquaculture expansion pressure in a given location by opening a gate for new species and aquaculture zone expansion northward in the northern hemisphere, otherwise unavailable due to temperature limit. But in the science of climate change, the ways of influence on aquaculture are complex and ambiguous, and hence are still hard to identify and quantify. At the same time considerable parts of our knowledge on climate change effects on aquaculture are from the estimates from data of fisheries and agriculture. The consequences may be different from what they really are, particularly in the temperature region. In reality, bivalves and tunicates hung or caged in the longline system are often exposed to temperatures higher than those they encounter in nature, locally driving the farmed shellfish into an upper tolerable temperature extreme. We review recent climate change and following environment changes which can be factors or potential factors affecting shellfish aquaculture production in the temperate region.

Keywords

References

  1. Alheit, J. and Niquen, M. (2004) Regime shifts in the Humboldt Current ecosystem. Progress in Oceanography, 60: 201-222. https://doi.org/10.1016/j.pocean.2004.02.006
  2. Bamber, R.N. (2011) The effects of acidic seawater on three species of lamellibranch mollusk. Journal of Experimental Marine Biology and Ecology, 143: 181-191.
  3. Bates, B., Kundzewicz, Z.W., Wu, S. and Palutikof, J.P. (2008) Climate Change and Water. Technical Paper VI of the Intergovernmental Panel on Climate Change. Intergovernmental Panel on Climate Change Secretariat, Geneva, pp. 210.
  4. Belkin, I.M. (2009) Rapid warming of large marine ecosystems. Progress In Oceanography, 81: 207-213. https://doi.org/10.1016/j.pocean.2009.04.011
  5. Bibby, R., Widdicombe, S., Parry, H., Spicer, J. and Pipe, R. (2008) Effects of ocean acidification on the immune response of the blue mussel Mytilus edulis. Aquatic Biology, 2: 67-74. https://doi.org/10.3354/ab00037
  6. Both, C. and Visser, M.E. (2001) Adjustment to climate change is constrained by arrival date in a long-distance migrant bird. Nature, 411: 296-298. https://doi.org/10.1038/35077063
  7. Bradley, N.L., Leopold, A.C., Ross, J. and Huffaker, W. (1999) Phenological changes reflect climate change in Wisconsin. Proceedings of National Academy of Science U.S.A., 96: 9701-9704. https://doi.org/10.1073/pnas.96.17.9701
  8. Brian, J.V., Beresford, N., Margiotta-Casaluci, L. and Sumpter, J.P. (2011) Preliminary data on the influence of rearing temperature on the growth and reproductive status of fathead minnows Pimephales promelas. Journal of Fish Biology, 79: 80-88. https://doi.org/10.1111/j.1095-8649.2011.02993.x
  9. Brown, J.L., Li, S.H. and Bhagabati, N. (1999) Long-term trend toward earlier breeding in an American bird: a response to global warming? Proceedings of National Academy of Science U.S.A., 96: 5565-5569. https://doi.org/10.1073/pnas.96.10.5565
  10. Burreson, E.M. and Frizzell, L.J. (1986) The seasonal antibody response in juvenile summer flounder (Pardichthys dentatus) to the hemoflagellate Trypunoplusmu bullocki. Veterinary Immunology and Immunopathology, 12: 395-402. https://doi.org/10.1016/0165-2427(86)90146-7
  11. Cairns, J., Heath, A.G. and Parker, B.C. (1975) The effects of temperature upon the toxicity of chemicals to aquatic organisms. Hydrobiologia, 47: 135-171. https://doi.org/10.1007/BF00036747
  12. Carere, M., Miniero, R. and Cicero, M.R. (2011) Potential effects of climate change on the chemical quality of aquatic biota. Trends in Analytical Chemistry, 30: 2011-1021.
  13. Carlton, J.T. (1996) Pattern, process, and prediction in marine invasion ecology. Biological Conservation, 78: 97-106. https://doi.org/10.1016/0006-3207(96)00020-1
  14. Cerenius, L. and Söderhäll, K. (2004) The prophenoloxidase-activating system in invertebrates. Immunological Review, 198: 116-126. https://doi.org/10.1111/j.0105-2896.2004.00116.x
  15. Cerenius, L. and Söderhäll, K. (2011) Coagulation in invertebrates. Journal of Innate Immunology, 3: 3-8. https://doi.org/10.1159/000322066
  16. Chaga, O., Lignell, M. and Söderhäll, K. (1995) The haemopoietic cells of the freshwater crayfish Pacifastacus leniusculus. Animal Biology, 4: 59-70.
  17. Chu, F.L.E., (1996) Laboratory investigations of susceptibility, infectivity, and transmission of Perkinsus marinus in oysters. Journal of Shellfish Research, 15: 57-66.
  18. Clavero, M. and Garcia-Berthou, E. (2005) Invasive species are a leading cause of animal extinctions. Trends in Ecology and Evolution, 20: 110. https://doi.org/10.1016/j.tree.2005.01.003
  19. Cognie, B., Haure, J. and Barille, L. (2006) Spatial distribution in a temperate coastal ecosystem of the wild stock of the farmed oyster Crassostrea gigas (Thunberg). Aquaculture, 259: 249-259. https://doi.org/10.1016/j.aquaculture.2006.05.037
  20. Cook, T., Folli, M., Klinck, J., Ford, S. and Miller, J. (1998) The relationship between increasing sea-surface temperature and the northward spread of Perkinsus marinus (Dermo) disease epizootics in oysters. Estuarine, Coastal and Shelf Science, 46: 587-597. https://doi.org/10.1006/ecss.1997.0283
  21. Cooley, S.R., Lucey, N., Kite-Powell, H. and Doney S.C., (2012) Nutrition and income from molluscs today imply vulnerability to ocean acidification tomorrow. Fish and Fisheries, 13: 182-215. https://doi.org/10.1111/j.1467-2979.2011.00424.x
  22. Devlin, R.H. and Nagahama, Y. (2002) Sex determination and sex differentiation in fish: an overview of genetic, physiological, and environmental influences. Aquaculture, 208: 191-364. https://doi.org/10.1016/S0044-8486(02)00057-1
  23. Drinkwaard, A.C. (1999) Introductions and developments of oysters in the North Sea area: a review. Helgolander Meeresuntersuchungen, 52: 301-308.
  24. Dukes, J.S. and Mooney, H. (1999) Does global change increase the success of biological invaders? Trends in Ecology and Evolution, 14: 135-139. https://doi.org/10.1016/S0169-5347(98)01554-7
  25. Dupont, S., Ortega-Martinez, O. and Thorndyke, M. (2010) Impact of near-future ocean acidification on echinoderms. Ecotoxicology, 19: 449-462. https://doi.org/10.1007/s10646-010-0463-6
  26. Dutertre, M., Beninger, P.G., Barille, L., Papin, M. and Haure, J. (2010) Rising water temperatures, reproduction and recruitment of an invasive oyster, Crassostrea gigas, on the French Atlantic coast. Marine Environmental Research, 69: 1-9. https://doi.org/10.1016/j.marenvres.2009.07.002
  27. FAO (2009) Food and Agriculture Organization of the United Nations. The state of world Fisheries and Aquaculture 2009, FAO Fisheries and Aquaculture Department, Rome.
  28. Findlay, H.S., Burrows, M.T., Kendall, M.A., Spicer, J.I. and Widdicombe, S. (2010b) Can ocean acidification affect population dynamics of the barnacle Semibalanus balanoides at its southern range edge? Ecology, 91: 2931-2940. https://doi.org/10.1890/09-1987.1
  29. Findlay, H.S., Kendall, M.A., Spicer, J.I. and Widdicombe, S. (2010a) Post-larval development of two intertidal barnacles at elevated $CO_{2}$ and temperature. Marine Biololgy, 157: 725-735. https://doi.org/10.1007/s00227-009-1356-1
  30. Flegel, T.W. (2009) Review of disease transmission risks from prawn products exported for human consumption. Aquaculture, 290: 179-189. https://doi.org/10.1016/j.aquaculture.2009.02.036
  31. Frank, K.T., Petrie, B., Choi, J.S. and Leggete, W.C. (2005) Trophic cascades in a formerly cod-dominated ecosystem. Science, 308: 1621-1623. https://doi.org/10.1126/science.1113075
  32. Gadomski, D.M. and Caddell, S.M. (1991) Effects of temperature on early-life-history stages of California halibut Paralichthys californicus. Fishery Bulletin, 89: 567-576.
  33. Goulletquer, P. (1995) Cycle de reproduction naturelle de l'huitre creuse Crassostrea gigas. Groupe de travail sur la Reproduction des Mollusques Bivalves d'Aquaculture Marine, IFREMER, Nantes, France.
  34. Gourgou, E., Aggeli, I.K., Beis, I. and Gaitanaki, C. (2010) Hyperthermia-induced Hsp70 and MT20 transcriptional upregulation are mediated by p38-MAPK and JNKs in Mytilus galloprovincialis (Lamarck); a pro-survival response. Journal of Experimental Biology, 213: 347-357. https://doi.org/10.1242/jeb.036277
  35. Green, T.R., Taniguchi, M., Kooi, H., Gurdak, J.J., Allen, D.M., Hiscock, K.M., Treidel, H. and Aureli, A. (2011) Beneath the surface of global change: Impacts of climate change on groundwater. Journal of Hydrology, 405: 532-560. https://doi.org/10.1016/j.jhydrol.2011.05.002
  36. Gregory, P.J., Ingram, J.S.I. and Brklacich, M. (2005) Climate change and food security. Biological Science, 29: 2139-2148.
  37. Grigorakis, K. and Rigos, G. (2011) Aquaculture effects on environmental and public welfare - The case of Mediterranean mariculture. Chemosphere, 855: 899-919.
  38. Guo, X. and Luo, Y. (2006) Scallop culture in China. In: Scallops: Shumway S.E. and Parsons G.J. (eds). Biology, Ecology and Aquaculture. Elsevier Press, Amsterdam, the Netherlands, pp. 1143-1161.
  39. Hall-Spencer, J.M., Rodolfo-Metalpa, R., Martin, S., Ransome, E., Fine, M., Turner, S.M., et al. (2008) Volcanic carbon dioxide vents show ecosystem effects of oceanacidification. Nature, 454: 96-98. https://doi.org/10.1038/nature07051
  40. Handisyde N.T., Ross L.G., Badjeck M.C., and Allison E.H. (2006) "The Effects of Climate change on World Aquaculture: A global perspective". Department for International Development, UK. http://www.aqua.stir.ac.uk/GISAP/pdfs/Climate_full.pdf
  41. Harley, C.D.G., Hughes, A.R., Hultgren, K.M., Miner, B.G., Sorte, C.J.B., Thornber, C.S., et al. (2006) The impacts of climate change in coastal marine systems. Ecology Letters, 9: 228-241. https://doi.org/10.1111/j.1461-0248.2005.00871.x
  42. Harris, L.G. and Tyrrell, M.C. (2001) Changing community states in the Gulf of Maine: synergism between invaders, overfishing and climate change. Biological Invasions, 3: 9-21. https://doi.org/10.1023/A:1011487219735
  43. Harvell, D., Altizer, S., Cattadori, I.M., Harrington, L. and Weil, E. (2009) Climatechange and wildlife diseases: when does the host matter the most? Ecology, 90: 912-920. https://doi.org/10.1890/08-0616.1
  44. Hendriks, I.E., Duarte, C.M. and Alvarez, M. (2010) Vulnerability of marine biodiversity to ocean acidification: a meta-analysis. Estuarine Coastal and Shelf Science, 86: 157-164. https://doi.org/10.1016/j.ecss.2009.11.022
  45. Hernroth, B., Sköld, H.N., Wiklander, K., Jutfelt, F. and Baden, S. (2012) Simulated climate change causes immune suppression and protein damage in the crustacean Nephrops norvegicus. Fish and Shellfish Immunology. (in press)
  46. Heugens, E.H.W., Jager, T., Creyghton, R., Kraak, M.H.S., Hendriks, A.J., van Straalen N.M., et al. (2003) Temperature-dependent effects of cadmium on Daphnia magna: accumulation versus sensitivity. Environmental Science and Technology, 37, 2145-2151. https://doi.org/10.1021/es0264347
  47. Hjeltnes, B. and Roberts, R.J. (1993) Vibriosis. In: Bacterial diseases of fish. Inglis V, Roberts RJ and Bromage NR, eds. Blackwell Scientific Publications, Oxford, UK, pp. 109-122 (1993).
  48. Holt, R.A., Rohovec, J.S. and Fryer, J.L. (1993) Bacterial cold-water disease. In: Inglis, V., Roberts, R.J. and Bromage, N.R. (eds.). Bacterial diseases of fish. Blackwell Scientific Publications; Oxford, UK, pp. 3-23.
  49. Howe, G.E., Marking, L.L., Bills, T.D., Rach, J.J. and Mayer, F.L. Jr (1994) Effects of water temperature and pH on toxicity of terbufos, trichlorfo, 4-nitrophenol and 2,4-dinitrophenol to the amphipod Gammarus pseudolimnaeus and rainbow trout (Oncorhynchus mykiss). Environmental Toxicology and Chemistry, 13: 51-66. https://doi.org/10.1002/etc.5620130109
  50. Hrubec, T.C., Robertson, J.L., Smith, S.A. and Tinker, M.K. (1996) The effect of temperature and water quality on antibody response to Aeromonas salmonicida in sunshine bass (Morone chrysops x Morone saxatilis). Veterinary Immunology and Immunopathology, 50: 157-166. https://doi.org/10.1016/0165-2427(95)05491-X
  51. Imsland, A.K., Sunde, L.M., Folkvord, A. and Stefansson, S.O. (1996) The interaction between temperature and size on growth of juvenile turbot. Journal of Fish Biology, 49: 926-940. https://doi.org/10.1111/j.1095-8649.1996.tb00090.x
  52. IPCC, (2007) Climate Change 2007: The Physical Science Basis. In: Qin, S. Manning, D., Chen, M., Marquis, M. and Averyt, K. (eds.). Contribution of Working Group I to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change. Solomon Cambridge Univ. Press, Cambridge, UK, pp. 433-497.
  53. Jiravanichpaisal, P., Soderhall, K. and Soderhall, I. (2004) Effect of water temperature on the immune response and infectivity pattern of white spot syndrome virus (WSSV) in freshwater crayfish. Fish and Shellfish Immunology, 17: 265-275. https://doi.org/10.1016/j.fsi.2004.03.010
  54. Jo, Q., Kim, S.K., Lee, C., Gong, Y.G., Rahman, M.M., Kim, D.K., Lee, J.S. and Park, K.J. (2008) Survival and growth performance of the Japanese scallop Patinopecten yessoensis seeds produced in the upper tolerant temperature. World Aquaculture Society abstract, p. 295.
  55. Jonassen, T.M., Imsland, A.K. and Stefansson, S.O. (1999) The interaction of temperature and size on growth of juvenile Atlantic halibut. Journal of Fish Biology, 54: 556-572. https://doi.org/10.1111/j.1095-8649.1999.tb00635.x
  56. Jones, P.G. and Thornton, P.K. (2003) The potential impacts of climate change on maize production in Africa and Latin America in 2055. Global Environment Change, 13: 51-59. https://doi.org/10.1016/S0959-3780(02)00090-0
  57. Karvonen, A., Rintammaki, P., Jokela, J. and Valtonen, E.T. (2010) Increasing water temperature disease risks in aquatic systems: Climate change increases the risk some, but not all, diseases. International Journal of Parasitology, 40: 1483-1488. https://doi.org/10.1016/j.ijpara.2010.04.015
  58. Kimlu, M.K. and Eroldogan, O.T. (2004) Effects of temperature on acute toxicity of ammonia to Penaeus semisulcantus juvenile. Aquaculture, 241: 479-489. https://doi.org/10.1016/j.aquaculture.2004.05.003
  59. Klesius, P.H. (1990) Effect of size and temperature on the quantity of immunoglobulin in channel catfish, Ictulurus punctutus. Veterinary Immunology and Immunopathology, 24: 187-195. https://doi.org/10.1016/0165-2427(90)90021-J
  60. Kosaka, Y. and Ito, H. (2006) Japan. In: Shumway, S.E. and Parsons, G.J. (eds.). Scallops: Biology, Ecology and Aquaculture, Elsevier Press, Amsterdam, the Netherlands, pp. 1093-1141.
  61. Kroeker, K.J., Kordas, R.L., Crim, R.N. and Singh, G.G. (2008) Meta-analysis reveals negative yet variable effects of oceanacidification on marine organisms. Ecology Letters, 13: 1419-1434.
  62. Kroeker, K.J., Kordas, R.L., Crim, R.N. and Singh, G.G. (2010) Review and synthesis: meta-analysis reveals negative yet variable effects of ocean acidification on marine organisms. Ecology Letters, 13: 1419-1434. https://doi.org/10.1111/j.1461-0248.2010.01518.x
  63. Kurihara, H., Kato, S. and Ishimatsu, A. (2007) Effects of increased seawater $pCO_{2}$ on early development of the oyster Crassotrea gigas. Aquatic Biology, 1: 91-98. https://doi.org/10.3354/ab00009
  64. Kurihara, H. and Ishimatsu, A. (2008) Effects of high $CO_{2}$ seawater on the copepod (Acartia tsuensis) through all life stages and subsequent generations. Marine Pollution Bulletin, 56: 1086-1090. https://doi.org/10.1016/j.marpolbul.2008.03.023
  65. Lavoie, J.N., Lambert, H., Hickey, E., Weber, L.A. and Landry, J. (1995) Modulation of cellular thermoresistance and actin filament stability accompanies phosphorylation-induced changes in the oligomeric structure of heat shock protein 27. Molecular and Cellular Biology, 15: 505-516. https://doi.org/10.1128/MCB.15.1.505
  66. Lehodey, P., Alheit, J., Barange, M., Baumgartner, T., Beaugrand, G., Drinkwater, K., et al. (2006) Climate variability, fish and fisheries. Journal of Climate, 19: 5009-5030. https://doi.org/10.1175/JCLI3898.1
  67. Li, Q., Xu, K. and Yu, R. (2007) Genetic variation in Chinese hatchery populations of the Japanese scallop (Patinopecten yessoensis) inferred from microsatellite data. Aquaculture, 269: 211-219. https://doi.org/10.1016/j.aquaculture.2007.04.017
  68. Liu, W. and He, M. (2012) Effects of ocean acidification on the metabolic rates of three species of bivalve from southern coast of China. Chinese Journal of Oceanography and Limnology, 30: 2006- 2016.
  69. Lorenzena, E., Einer-Jensena, K., Rasmussena, J.S., Kjæra, T.E., Collet, B., Secombesb, C.J. and Lorenzena, N. (2009) The protective mechanisms induced by a fish rhabdovirus DNA vaccine depend on temperature. Vaccine, 27: 3870-3880. https://doi.org/10.1016/j.vaccine.2009.04.012
  70. Luo, Y. (1991) Scallop. In: Shumway, S.E. (ed.). Scallops: Biology, Ecology and Aquaculture. Elsevier, Amsterdam, the Netherlands, pp. 809-824.
  71. Mack, R.N., Simberloff, D., Lonsdale, W.M., Evans, H., Clout, M. and Bazzaz, F.A. (2000) Biotic invasions: causes, epidemiology, global consequences, and control. Ecological Applications, 10: 689-710. https://doi.org/10.1890/1051-0761(2000)010[0689:BICEGC]2.0.CO;2
  72. Marcos-López, M., Gale, P., Oidtmann, B.C. and Peeler, E.J. (2010) Assessing the impact of climate change on disease emergence in freshwater fish in the United Kingdom. Transboundary and Emerging Diseases, 57: 293-304. https://doi.org/10.1111/j.1865-1682.2010.01150.x
  73. Martin, S., Rodolfo-Metalpa, R., Ransome, E., Rowley, S., Buia, M.C., Gattuso, J.-P., et al.(2008) Effects of naturally acidified seawater on seagrass calcareous epibionts. Biological letters, 4: 689-692. https://doi.org/10.1098/rsbl.2008.0412
  74. Martinez-Urtaza, J., Lozano-Leon, A., Varela-Pet, J., Trinanes, J., Pazos, Y. and Garcia-Martin, O. (2008) Environmental determinants of the occurrence and distribution of Vibrio parahaemolyticus in the rias of Galicia, Spain. Applied and Environmental Microbiology, 74: 265-274. https://doi.org/10.1128/AEM.01307-07
  75. Matozzo, V. and Marin, M.G. (2011) Bivalve immune responses and climatechanges: is there a relationship? Information System Journal, 8: 70-77.
  76. Mazaris, A.D., Kallimanis, A.S., Sgardelis, S.P. and Pantis, J.D. (2008) Do long-term changes in sea surface temperature at the breeding areas affect the breeding dates and reproduction performance of Mediterranean loggerhead turtles? Implications for climate change. Journal of Experimental Marine Biology and Ecology, 367: 219-226. https://doi.org/10.1016/j.jembe.2008.09.025
  77. McCauley, R. and Beitinger, T. (1992) Predicted effects of climate warming on the commercial culture of the channel catfish. Ictalurus punctatus. Geojournal, 28: 61-66. https://doi.org/10.1007/BF00216407
  78. McCauley, R.W. and Huggins, N.W. (1979) Ontogenetic and non-thermal seasonal effects on thermal preferenda of fish. American Zoologist, 19, 267-271. https://doi.org/10.1093/icb/19.1.267
  79. Moehler, J., Wegner, K.M., Reise, K. and Jacobsen, S. (2011) Invasion genetics of Pacific oyster Crassostrea gigas shaped by aquaculture stocking practices. Journal of Sea Research, 66: 256-262. https://doi.org/10.1016/j.seares.2011.08.004
  80. NAS (2008) Understanding and Responding to climate change. 2008 Report of United States National Academy of Sciences. http://americasclimatechoices.org/climate_change_2008_final.pdf.
  81. NFRDI (2006) The Final Report of Fisheries Studies for Research Evaluation (Fisheries Life Sciences: Aquaculture Sciences), NFRDI, Korea, pp. 105-155. (in Korean)
  82. Niquen, M. and Bouchon, M. (2004) Impact of El Nino events on pelagic fisheries in Peruvian waters. Deep Sea Research, 51: 563-574. https://doi.org/10.1016/j.dsr2.2004.03.001
  83. Occhipinti-Ambrogi, A. (2007) Global change and marine communities: Alien species and climate change. Marine Pollution Bulletin, 55: 342-352. https://doi.org/10.1016/j.marpolbul.2006.11.014
  84. Occhipinti-Ambrogi, A. and Savini, D. (2003) Biological invasions as a component of global change in stressed marine ecosystems. Marine Pollution Bulletin, 46: 542-551. https://doi.org/10.1016/S0025-326X(02)00363-6
  85. Olson, S.H., Gangnon, R., Elguero, E., Durieux, L., Guegan, J.F., Foley, J.A. and Patz, J.A. (2009) Links between climate, malaria, and wetlands in the Amazon Basin. Emerging Infectious Disease, 15: 659-662. https://doi.org/10.3201/eid1504.080822
  86. Orr, J.C, Fabry, V.J, Aumont, O., Bopp, L., Doney, S.C., Feely, R.A. et al. (2005) Anthropogenic ocean acidification over the twenty-first century and its impact on calcifying organisms. Nature, 437: 681-686. https://doi.org/10.1038/nature04095
  87. Paalvast, P. and van der Velde, G. (2011) New threats of an old enemy: the distribution of the shipworm Teredo navalis L. (Bivalvia: Teredinidae) related to climate change in the Port of Rotterdam area, the Netherlands. Marine Pollution Bulletin, 62: 1822-1829. https://doi.org/10.1016/j.marpolbul.2011.05.009
  88. Pansch, C., Nasrolahi, A., Appelhans, Y.S. and Wahl, M. (2012) Impacts of ocean warming and acidification on the larval development of the barnacle Amphibalanus improvises. Journal of Experimental Marine Biology and Ecology, 420-421: 48-55. https://doi.org/10.1016/j.jembe.2012.03.023
  89. Parmesan, C. (2006) Ecological and evolutionary responses to recent climate change. Annual Review of Ecology, Evolution, and Systematics, 37: 637-669. https://doi.org/10.1146/annurev.ecolsys.37.091305.110100
  90. Patz, J.A.D., Campbell-Lendrum, T., Holloway, J. and Foley, A. (2005) Impact of regional climate change on human health. Nature, 438: 310-317. https://doi.org/10.1038/nature04188
  91. Pedersen, T. and Jobling, M. (1989) Growth rates of large, sexually mature cod, Gadus morhua, in relation to condition and temperature during an annual cycle. Aquaculture, 81: 161-168. https://doi.org/10.1016/0044-8486(89)90242-1
  92. Perez-Casanova, J.C., Rise, M.L., Dixon, B., Afonso, L.O.B., Hall, J.R., Johnson, S.C. and Gamperl, A.K. (2008) The immune and stress responses of Atlantic cod to long-term increases in water temperature. Fish and Shellfish Immunology, 24: 600-609. https://doi.org/10.1016/j.fsi.2008.01.012
  93. Perry, A.L., Low, P.J., Ellis, J.R. and Reynolds, J.D. (2005) Climate change and distribution shifts in marine fishes. Science, 308: 1912-1915. https://doi.org/10.1126/science.1111322
  94. Range, P., Chícharo, M.A., Ben-Hamadou, R., Piló, D., Matias, D., Joaquim, S., Oliveira, AP. and Chícharo, L. (2011) Calcification, growth and mortality of juvenile clams Ruditapes decussatus under increased $pCO_{2}$ and reduced pH: Variable responses to ocean acidification at local scales? Journal of Experimental and Marine Biology and Ecology, 396: 177-184. https://doi.org/10.1016/j.jembe.2010.10.020
  95. Range, P., Piló, D., Ben-Hamadou, R., Chícharo, M.A., Matias, D., Joaquim, S., Oliveira, A.P. and Chícharo, L. (2012) Seawater acidification by $CO_{2}$ in a coastal lagoon environment: Effects on life history traits of juvenile mussels Mytilus galloprovincialis. Journal of Experimental Marine Biology and Ecology, 144: 89-98.
  96. Richardson, A. and Poloczanska, E. (2008) OCEAN SCIENCE: under-resourced, under threat. Science, 320: 1294-1295. https://doi.org/10.1126/science.1156129
  97. Ries, J.B., Cohen, A.L., and McCorkle, D.C. (2009) Marine calcifiers exhibit mixed responses to $CO_{2}$-induced ocean acidification. Geology, 37: 1131-1134. https://doi.org/10.1130/G30210A.1
  98. Rius, M., Heasman, K.G. and McQuaid, C.D. (2011) Long-term coexistence of non-indigenous species in aquaculture facilities. Marine Pollution Bulletin, 62: 2395-2403. https://doi.org/10.1016/j.marpolbul.2011.08.030
  99. Root, T.L., Price, J.T., Hall, K.R., Schneider, S.H., Rosenzweig, C. and Pounds, J.A. (2003) Fingerprints of global warming on wild animals and plants. Nature, 421: 57-60. https://doi.org/10.1038/nature01333
  100. Rosenfield, A. (1992) Risks associated with translocations of biological agents. In: Rosenfield, A. and Mann R. (eds). Dispersal of living organisms into aquatic ecosystems. Maryland Sea Grant, College Park, USA, pp. 3-12.
  101. Rosenzweig, C., Karoly, D.J., Vicarelli, M., Neofotis, P., Wu, Q., Casassa, G., Menzel, A. et al. (2008) Attributing physical and biological impacts to anthropogenic climate change. Nature, 453: 353-357. https://doi.org/10.1038/nature06937
  102. Ruesink, J.L., Lenihan, H.S., Trimble, A.C., Heiman, K.W., Micheli, F., Byers, J.E. and Kay, M.C. (2005) Introduction of non-native oysters: ecosystem effects and restoration implications. Annual Review of Ecology, Evolution, and Systematics, 36: 643-689. https://doi.org/10.1146/annurev.ecolsys.36.102003.152638
  103. Scott, A.L., Rogers, W.A. and Klesius, P.H. (1985) Chemiluminescence by peripheral blood phagocytes from channel cattish: function of opsonin and temperature. Developmental and Comparative Immunology, 9: 241-250. https://doi.org/10.1016/0145-305X(85)90115-6
  104. Seppälä, O. and Jokela, J. (2011) Immune defence under extreme ambient temperature. Biological Letter, 7: 119-122. https://doi.org/10.1098/rsbl.2010.0459
  105. Smaal, A.C., Kater, B.J. and Wijsman, J. (2009) Introduction, establishment and expansion of the Pacific oyster Crassostrea gigas in the Oosterschelde (SW Netherlands). Helgoland Marine Research, 63: 75-83. https://doi.org/10.1007/s10152-008-0138-3
  106. Somero, G.N. (2010) The physiology of climate change: how potentials for acclimatization and genetic adaptation will determine 'winners' and 'losers'. Journal of Experimental Biology, 213: 912-920. https://doi.org/10.1242/jeb.037473
  107. Sorte, C.J.B., Jones, S.J. and Miller, L.P. (2011) Geographic variation in temperature tolerance as an indicator of potential population responses to climate change. Journal of Experimental Marine Biology and Ecology, 400: 209-217. https://doi.org/10.1016/j.jembe.2011.02.009
  108. Stachowicz, J.J., Terwin, J.R., Whitlatch, R.B. and Osman, R.W. (2002) Linking climate change and biological invasions: ocean warming facilitates non indigenous species invasions. Proceedings of the National Academy of Sciences, 99: 15497-15500. https://doi.org/10.1073/pnas.242437499
  109. Stenevik, E.K. and Sundby, S. (2007) Impacts of climate change on commercial fish stocks in Norwegian waters. Marine Policy, 31: 19-31. https://doi.org/10.1016/j.marpol.2006.05.001
  110. Talmage, S.C. and Gobler, C.J. (2009) The effects of elevated carbon dioxide concentrations on the metamorphosis, size, and survival of larval hard clams (Mercenaria mercenaria), bay scallops (Argopecten irradians), and Eastern oysters (Crassostrea virginica). Journal of Limnology and Oceanography, 54: 2072-2080. https://doi.org/10.4319/lo.2009.54.6.2072
  111. Talmage, S.C. and Gobler, C.J. (2011) Seawater carbonate chemistry and biological processes of bivalve shellfish Mercenaria mercenaria and Argopecten irradians during experiments. Proceedings of the National Academy of Sciences, U.S.A., 107: 17246-17251.
  112. Taylor, G.S. (2008) Climate warming causes phenological shift in Pink Salmon, Oncorhynchus gorbuscha, behavior at Auke Creek, Alaska. Global Change Biology, 14: 229-235.
  113. Tomanek, L. and Zuzow, M.J. (2010) The proteomic response of the mussel congeners Mytilus galloprovincialis and M. trossulus to acute heat stress: implications for thermal tolerance limits and metabolic costs of thermal stress. Journal of Experimental Biology, 213: 3559-3574. https://doi.org/10.1242/jeb.041228
  114. Van Ginkel, F.W., van Muiswinkel, W.B., Merchant, B., Lizzio, E.F, Dixon, O.W. and Anderson, D.P. (1985) Temperature comparisons for antibody production in vitro by plaque-forming cells from the trout, Sulmo gairdneri (Richardson), and mice. Journal of Fish Biology, 27: 265-272. https://doi.org/10.1111/j.1095-8649.1985.tb04027.x
  115. Vargas-Albores, F., Hinojosa-Baltazar, P., Portillo-Clark, G. and Magallon-Baraja, F. (1998) Influence of temperature and salinity on the yellowleg shrimp, Penaeus californiensis Holmes, prophenoloxidase system. Aquaculture Research, 29: 549-553. https://doi.org/10.1111/j.1365-2109.1998.tb01166.x
  116. Venter, O., Brodeur, N.N., Belland, B., Dolinsek, I.J. and Grant, J.W.A. (2006) Threats to endangered species in Canada. Biological Sciences, 56: 903-910.
  117. Visser, M.E., Both, C. and Lambrechts, M.M. (2004) Global climate change leads to mistimed avian reproduction. Advances In Ecological Research, 35: 89-110. https://doi.org/10.1016/S0065-2504(04)35005-1
  118. Vitousek, P.M., D'Antonio, C.M., Loope, L.L., Rejmanek, M. and Westbrooks, R. (1997) Introduced species: a significant component of humancaused global change. New Zealand Journal of Ecology, 21: 1-16.
  119. Wang, F.Y., Yang, H.S., Gao, F. and Liu, G.B. (2008) Effects of acute temperature or salinity stress on the immune response in sea cucumber, Apostichopus japonicas. Comparative Biochemistry and Physiology Part A Molecular and Integrative Physiology, 151: 491-498. https://doi.org/10.1016/j.cbpa.2008.06.024
  120. Wehrmann, A., Herlyn, M., Bungenstock, F., Hertweck, G. and Millat, G. (2000) The distributiongap is closed - first record of naturally settled Pacific oysters Crassostrea gigas in the East Frisian Wadden Sea, North Sea. Senckenb Marit, 30: 153-160. https://doi.org/10.1007/BF03042964
  121. Welladsen, H.M., Southgate, P.C. and Heimann, K. (2010) The effects of exposure to near-future levels of oceanacidification on shell characteristics of Pinctada fucata (Bivalvia: Pteriidae). Molluscan Research, 30: 125-130.
  122. Wernberg, T., Russell, B.D., Moore, P.J., Ling, S.D., Smale, D.A., Cambpbell, A., Coleman, M.A. et al. (2011) Impacts of climate change in a global hotspot for temperate marine biodiversity and ocean warming. Journal of Experimental Marine Biology and Ecology, 400: 7-16. https://doi.org/10.1016/j.jembe.2011.02.021
  123. Whitfield, P.E., Hare, J.A., David, A.W., Harter, S.L., Munoz, R.C. and Addison, C.M. (2007) Abundance estimates of the Indo-Pacific lionfish Pterois volitans/miles complex in the Western North Atlantic. Biological Invasions, 9: 53-64.
  124. Wolf, K. (1988a) Spring Viremia of Carp. In: Wolf, K. (ed.). Fish viruses and fish viral diseases. Cornell University Press, USA, pp. 191-216.
  125. Wolf, K. (1988b) Viral hemorrhagic septicemia. In: Wolf, K. (ed.). Fish viruses and fish viral diseases. Cornell University Press, USA, pp. 217-249.
  126. Wolff, W.J. and Reise, K. (2002) Oyster imports as a vector for the introduction of alien species into Northern and Western European coastal waters. In: Lepptikoski, E., Gollasch, S. and Olenin, S. (eds.). Invasive aquatic species of Europe: distribution, impacts and management. Kluwer Academic Publishers, Dordrecht, The Netherlands, pp. 193-205.
  127. Wrange, A., Valero, J., Harkestad, L., Strand, O., Lindegarth, S., Christensen, H., Dolmer, P., Kristensen, P. and Mortensen, S. (2010) Massive settlements of the Pacific oyster, Crassostrea gigas, in Scandinavia. Biological Invasions, 12: 1145-1152. https://doi.org/10.1007/s10530-009-9535-z