• 제목/요약/키워드: Climate Regions

검색결과 748건 처리시간 0.024초

농촌지역 기후변화 취약성 평가에 관한 연구 - 서천군을 대상으로 - (Climate Change Vulnerability Assessment in Rural Areas - Case study in Seocheon -)

  • 이경진;차정우
    • 농촌계획
    • /
    • 제20권4호
    • /
    • pp.145-155
    • /
    • 2014
  • Since greenhouse gas emissions increase continuously, the authorities have needed climate change countermeasure for adapting the acceleration of climate change damages. According to "Framework Act on Low Carbon, Green Growth", Korean local governments should have established the implementation plan of climate change adaptation. These guidelines which is the implementation plan of climate change adaptation should be established countermeasure in 7 fields such as Health, Digester/Catastrophe, Agriculture, Forest, Ecosystem, Water Management and Marine/Fisheries. Basically the Korean local governments expose vulnerable financial condition, therefore the authorities might be assessed the vulnerability by local regions and fields, in order to establish an efficient implementation plan of climate change adaptation. Based on this concepts, this research used 3 methods which are LCCGIS, questionnaire survey analysis and analysis of existing data for the multiphasic vulnerable assessment. This study was verified the correlation among 7 elements of climate change vulnerability by 3 analysis methods, in order to respond climate change vulnerability in rural areas, Seocheon-gun. If the regions were evaluated as a vulnerable area by two or more evaluation methods in the results of 3 methods' comparison and evaluation, those areas were selected by vulnerable area. As a result, the vulnerable area of heavy rain and flood was Janghang-eup and Maseo-myeon, the vulnerable area of typhoon was Janghang-eup, Masan-myeon and Seo-myeon. 3 regions (i.e. Janghang-eup, Biin-myeon, Seo-myeon) were vulnerable to coastal flooding, moreover Masan-myeon, Pangyo-myeon and Biin-myeon exposed to vulnerability of landslide. In addition, Pangyo-myeon, Biin-myeon and Masan-myeon was evaluated vulnerable to forest fire, as well as the 3 sites; Masan-myeon, Masan-myeon and Pangyo-myeon was identified vulnerable to ecosystem. Lastly, 3 regions (i.e. Janghang-eup, Masan-myeon and Masan-myeon) showed vulnerable to flood control, additionally Janghang-eup and Seo-myeon was vulnerable to water supply. However, all region was evaluated vulnerable to water quality separately. In a nutshell this paper aims at deriving regions which expose climate change vulnerabilities by multiphasic vulnerable assessment of climate change, and comparing-evaluating the assessments.

기후변화 리스크의 지역 불평등 모니터링 : 폭염을 중심으로 (Monitoring regional inequalities in climate change risk - A Focus on Heatwave -)

  • 김근한
    • 한국환경복원기술학회지
    • /
    • 제24권6호
    • /
    • pp.97-107
    • /
    • 2021
  • Abnormal climate caused by climate change causes enormous social and economic damage. And such damage and its impact may vary depending on the location and regional characteristics of the region and the social and economic conditions of local residents. Therefore, it is necessary to continuously monitor whether there are indicators that are weaker than other regions among the detailed indicators that constitute the risk, exposure and vulnerability of climate change risk. In this study, the concept of climate change risk was used for heatwave to determine regional inequality of climate change risk. In other words, it was judged that inequality in climate change risk occurred in regions with high risk but high exposure and low vulnerability compared to other regions. As a result of the analysis, it was found that 13 local governments in Korea experienced regional inequality in climate change risk. In order to resolve regional inequality in climate change risks, the current status of regional inequality in climate change should be checked based on the analysis proposed in this study, there is a need for an evaluation and monitoring system that can provide appropriate feedback on areas where inequality has occurred. This continuous evaluation and monitoring-based feedback system is expected to be of great help in resolving regional inequality in climate change risks.

기후변화에 따른 보건 분야의 취약성 평가: O3을 중심으로 (Vulnerability Assessment of Human Health Sector due to Climate Change: Focus on Ozone)

  • 이재범;이현주;문경정;홍성철;김덕래;송창근;홍유덕
    • 한국대기환경학회지
    • /
    • 제28권1호
    • /
    • pp.22-38
    • /
    • 2012
  • Adaptation of climate change is necessary to avoid unexpected impacts of climate change caused by human activities. Vulnerability refers to the degree to which system cannot cope with impacts of climate change, encompassing physical, social and economic aspects. Therefore the quantification of climate change impacts and its vulnerability is needed to identify vulnerable regions and to setup the proper strategies for adaptation. In this study, climate change vulnerability is defined as a function of climate exposure, sensitivity, and adaptive capacity. Also, we identified regions vulnerable to ozone due to climate change in Korea using developed proxy variables of vulnerability of regional level. 18 proxy variables are selected through delphi survey to assess vulnerability over human health sector for ozone concentration change due to climate change. Also, we estimate the weighting score of proxy variables from delphi survey. The results showed that the local regions with higher vulnerability index in the sector of human health are Seoul and Daegu, whereas regions with lower one are Jeollanam-do, Gyeonggi-do, Gwangju, Busan, Daejeon, and Gangwon-do. The regions of high level vulnerability are mainly caused by their high ozone exposure. We also assessed future vulnerability according to the Intergovernmental Panel on Climate Change (IPCC) Special Report on Emissions Scenarios (SRES) A2, A1FI, A1T, A1B, B2, and B1 scenarios in 2020s, 2050s and 2100s. The results showed that vulnerability increased in all scenarios due to increased ozone concentrations. Especially vulnerability index is increased by approximately 2 times in A1FI scenarios in the 2020s. This study could support regionally adjusted adaptation polices and the quantitative background of policy priority as providing the information on the regional vulnerability of ozone due to climate change in Korea.

Identification of Molecular Markers for Population Diagnosis of Korean Fir (Abies koreana) Vulnerable to Climate Change

  • Kim, Dong Wook;Park, Da Young;Jeong, Dae Young;Park, Hyeong Cheol
    • Proceedings of the National Institute of Ecology of the Republic of Korea
    • /
    • 제1권1호
    • /
    • pp.68-73
    • /
    • 2020
  • Korean fir (Abies koreana) is an evergreen coniferous tree species that is unique to South Korea. A. koreana is found in a limited sub-alpine habitat and is considered particularly vulnerable to climate change. Identification of populations vulnerable to climate change is an important component of conservation programs. In this study, a heat stress-induced transcriptome RNA-seq dataset was used to identify a subset of six genes for assessment as candidate marker genes for ecologically vulnerable populations. Samples of A. koreana were isolated from ecologically stable and vulnerable regions of the Halla and Jiri mountains, and the expression levels of the six candidate markers were assessed using quantitative real-time polymerase chain reaction. All six of the candidate genes exhibited higher expression levels in samples from vulnerable regions compared with stable regions. These results confirm that the six high temperature-induced genes can be used as diagnostic markers for the identification of populations of A. koreana that are experiencing stress due to the effects of climate change.

원격탐사자료에 기초한 국립공원 산림 생태계의 취약지역 분석 (Analysis of Vulnerable Regions of Forest Ecosystemin the National Parks based on Remotely-sensed Data)

  • 최철현;구경아;김진희
    • 한국환경복원기술학회지
    • /
    • 제19권5호
    • /
    • pp.29-45
    • /
    • 2016
  • This study identified vulnerable regions in the national parks of the Republic of Korea (ROK). The potential vulnerable regions were defined as areas showing a decline in forest productivity, low resilience, and high sensitivity to climate variations. Those regions were analyzed with a regression model and trend analysis using the Enhanced Vegetation Index (EVI) data obtained from long-term observed Moderate Resolution Imaging Spectroradiometer (MODIS) and gridded meteorological data. Results showed the area with the highest vulnerability was Naejangsan National Park in the southern part of ROK where 32.5% ($26.0km^2$) of the total area was vulnerable. This result will be useful information for future conservation planning of forest ecosystem in ROK under environmental changes, especially climate change.

Impact of abnormal climate events on the production of Italian ryegrass as a season in Korea

  • Kim, Moonju;Sung, Kyungil
    • Journal of Animal Science and Technology
    • /
    • 제63권1호
    • /
    • pp.77-90
    • /
    • 2021
  • This study aimed to assess the impact of abnormal climate events on the production of Italian ryegrass (IRG), such as autumn low-temperature, severe winter cold and spring droughts in the central inland, southern inland and southern coastal regions. Seasonal climatic variables, including temperature, precipitation, wind speed, relative humidity, and sunshine duration, were used to set the abnormal climate events using principal component analysis, and the abnormal climate events were distinguished from normal using Euclidean-distance cluster analysis. Furthermore, to estimate the impact caused by abnormal climate events, the dry matter yield (DMY) of IRG between abnormal and normal climate events was compared using a t-test with 5% significance level. As a result, the impact to the DMY of IRG by abnormal climate events in the central inland of Korea was significantly large in order of severe winter cold, spring drought, and autumn low-temperature. In the southern inland regions, severe winter cold was also the most serious abnormal event. These results indicate that the severe cold is critical to IRG in inland regions. Meanwhile, in the southern coastal regions, where severe cold weather is rare, the spring drought was the most serious abnormal climate event. In particular, since 2005, the frequency of spring droughts has tended to increase. In consideration of the trend and frequency of spring drought events, it is likely that drought becomes a NEW NORMAL during spring in Korea. This study was carried out to assess the impact of seasonal abnormal climate events on the DMY of IRG, and it can be helpful to make a guideline for its vulnerability.

유효가뭄지수(EDI)를 이용한 한반도 미래 가뭄 특성 전망 (Projection of Future Changes in Drought Characteristics in Korea Peninsula Using Effective Drought Index)

  • 곽용석;조재필;정임국;김도우;장상민
    • 한국기후변화학회지
    • /
    • 제9권1호
    • /
    • pp.31-45
    • /
    • 2018
  • This study implemented the prediction of drought properties (number of drought events, intensity, duration) using the user-oriented systematical procedures of downscaling climate change scenarios based the multiple global climate models (GCMs), AIMS (APCC Integrated Modeling Solution) program. The drought properties were defined and estimated with Effective Drought Index (EDI). The optimal 10 models among 29 GCMs were selected, by the estimation of the spatial and temporal reproducibility about the five climate change indices related with precipitation. In addition, Simple Quantile Mapping (SQM) as the downscaling technique is much better in describing the observed precipitation events than Spatial Disaggregation Quantile Delta Mapping (SDQDM). Even though the procedure was systematically applied, there are still limitations in describing the observed spatial precipitation properties well due to the offset of spatial variability in multi-model ensemble (MME) analysis. As a result, the farther into the future, the duration and the number of drought generation will be decreased, while the intensity of drought will be increased. Regionally, the drought at the central regions of the Korean Peninsula is expected to be mitigated, while that at the southern regions are expected to be severe.

Mitochondrial COI sequence-based population genetic analysis of the grasshopper, Patanga japonica Bolívar, 1898 (Acrididae: Orthoptera), which is a climate-sensitive indicator species in South Korea

  • Jee-Young Pyo;Jeong Sun Park;Seung Hyun Lee;Sung-Soo Kim;Heon Cheon Jeong;Iksoo Kim
    • International Journal of Industrial Entomology and Biomaterials
    • /
    • 제47권2호
    • /
    • pp.99-114
    • /
    • 2023
  • Patanga japonica Bolívar, 1898 (Orthoptera: Acrididae) is listed as a climate-sensitive indicator species in South Korea and is called southern group of insects in that the main distributional range is southern region of South Korea and Asian continent. In South Korea, thus, the species was distributed mainly in southern region of South Korea including southward a remote Jeju Island, but recently the species has often been detected in mid to northern region of South Korea, implying northward range expansion in response to climate change. Understanding the characteristics of the changes in genetic diversity during range expansion in response to climate change could be a foundation for the understanding of future biodiversity. Thus, in this study, we attempted to understand the changing pattern of the genetic diversity of the P. japonica in newly expanded regions. For the purpose of study, we collected 125 individuals from seven localities throughout South Korea including two newly distributed regions (Pyeongtaek and Yeongwol at ~37° N). These were sequenced for a segment of mitochondrial cytochrome oxidase subunit I (COI) and analyzed for genetic diversity, haplotype frequency, and population genetic structure among populations. Interestingly, northward range expansion accompanied only haplotypes, which are most abundant in the core populations, providing a significant reduction in haplotype diversity, compared to other populations. Moreover, genetic diversity was still lower in the expanded regions, but no genetic isolation was detected. These results suggest that further longer time would take to reach to the comparable genetic diversity of preexisting populations in the expanded regions. Probably, availability of qualified habitats at the newly expanded region could be pivotal for successful northward range expansion in response to climate change.

지역별 기후변화에 따른 토마토 황화잎말림병 피해 분석 (An Analysis of TYLCV Damages under Regional Climate Changes)

  • 윤지윤;김소윤;김관수;김홍석;안동환
    • 농촌계획
    • /
    • 제21권4호
    • /
    • pp.35-43
    • /
    • 2015
  • The purpose of the research is to analyze damages of TYLCV (Tomato Yellow Leaf Curl Virus) in the context of climate changes and to find the spatial distribution of the damages and characteristics of regions. A TYLCV is generally known for a plant disease related to temperature. Its occurrence rate increases when temperature rises. This disease first occurred in 2008 and rapidly spread nationwide. Due to the spread of a TYLCV, a number of Tomato farms in Korea were damaged severely. To analyze damages of the pest in the context of climate changes, this research estimated production loss under the current situation and RCP scenarios. Additionally, Hot Spot Analysis, LISA, and Cluster analysis were conducted to find spatial distribution and properties of largely damaged regions under RCP scenarios. The results explained that additional production loss was estimated differently by regions with the same temperature rising scenario. Also, largely damaged regions are spatially clustered and factors causing large damages were different across regional cluster groups. It means that certain regions can be damaged more than others by diseases and pests. Furthermore, pest management policy should reflect the properties of each region such as climate conditions, cultivate environment and production technologies. The findings from this research can be utilized for developing rural management plans and pest protection policies.