• Title/Summary/Keyword: Climate Industry

Search Result 649, Processing Time 0.025 seconds

The Study on the Physiological Response in Wearing Sportswear in Two Different Environments

  • Kwon, Oh Kyung;Kim, Jin-A
    • Fashion & Textile Research Journal
    • /
    • v.2 no.5
    • /
    • pp.416-422
    • /
    • 2000
  • In this study, to find out the physiological reaction of the human body and the sensation of comfort when people are wearing sportswear which is made of waterproof breathable fabrics under general environmental conditions (temperature : $20{\pm}1^{\circ}C$, humidity : $60{\pm}5%RH$, air current : 0.1 m/sec) and rainy environmental conditions (temperature : $20{\pm}1^{\circ}C$, humidity : $60{\pm}5%RH$, air current : 0.1 m/sec, rainfall : 250 1/hr), we made an experiment with sportswear in an artificial climate chamber and studied the thermal physiological response and subjective sensation. Mean skin temperature of the subjects was low and had a big range of fluctuation in rainy environmental conditions of two condition. Temperature started to increase at the beginning of the exercise, reached the maximum at the 2nd level of the exercise and then started to decline. Rectal temperature showed a slighter increase and bigger range of fluctuation in general conditions than in rainy conditions. Except clothing micro climate in rainy conditions, temperature and humidity and their range of fluctuation around back were higher than those around chest. Humidity was high and had wide range of fluctuation in general conditions. Heart rate was 4.4 beats/min higher in general conditions. In subjective test on rainy conditions, the feeling of discomfort increased due to the raindrops fallen on the skin. Unlike that in general conditions, cold sensation increased and humidity sensation reached to the peak after the exercise. In wearing sportswear made of shape memory breathable waterproof fabric, controlling function over a small amount of heat and water was distinctive while it turned out to be not so comfortable over a large amount of heat and water. Through this, the limitation of shape memory breathable waterproof fabric was recognised.

  • PDF

A Study on the Quantitative and Evaluation Weights of National Greenhouse Gas Emission Factors in the Mineral Industry (광물산업의 국가온실가스배출계수 정량·평가항목 가중치에 관한 연구)

  • Yoon, Yoongjoong;Cho, Changsang;Jeon, Eui Chan
    • Journal of Climate Change Research
    • /
    • v.9 no.1
    • /
    • pp.81-90
    • /
    • 2018
  • "The Framework Act on Low-Carbon Green Growth" specifies the requirements for the development and verification of emission factors for establishing reliable national greenhouse gas statistics. The scope of the regulations covers the development and validation of energy, industrial processes, solvents and other product use, agriculture, land use, land use change and emission and absorption coefficients of the forestry and waste sector as defined in the 1996 IPCC Guideline and GPG 2000, The minerals sector to be covered in this study belongs to industrial processes. As a representative method for quantifying and evaluating GHG emission factors, there are emission grade quality grading and DARS (Data Rating Rating System) in the 'Procedures for Preparing Emission Factor Documents (1997)' reported by US-EPA. However, the above two methods are not specific and comprehensive, and lack the details for accurate emission factor verification. Therefore, there is a need for a method for verifying and quantifying certified greenhouse gas emission factors that reflects characteristics of each industry sector in Korea and accord with IPCC G/L and GHG target management. In this study, we conducted a weighted study on quantitative and evaluation lists of emission factor using questionnaires to develop a more accurate methodology for quantifying national greenhouse gas emission factors in the mineral sector. Quantification and evaluation of emission factor are classified into essential verification and quality evaluation. The essential verifications are : administrative compatibility, method of determining emission factors, emission characteristics, sampling methods and analysis methods, representativeness of data. The quality evaluations consisted of the quality control of the data, the accuracy of the measurement and analysis, the level of uncertainty, not directly affect the emission factor, but consisted of factors that determine data quality.

Environmental Features and Actions of Pulp & Paper Industry (펄프.제지산업의 환경적 특성과 대책)

  • Cho, Jun-Hyung
    • Journal of Korea Technical Association of The Pulp and Paper Industry
    • /
    • v.41 no.3
    • /
    • pp.13-21
    • /
    • 2009
  • Pulp and paper industry is a typical plant industry which usually consume lots of water and energy. Recently, environmental issues have become more important due to climate changes around the world, and reinforcement in the regulatory content in transfer and management of chemical material and that in environmental regulations for waste water and air. Paper industry is a source material recycle industry which recycle or reuse waste paper, recyclable wood, planned plantation or lumber from thinning and waste wood. Hence it can be said that paper industry is the representative industry for earth environment and of 21th century.

The relationship between safety climate and accidents, and personal physical factors interactional effect (안전분위기 안전사고의 관계 및 인적요인과 물적 요인의 상호작용효과)

  • Ahn, Kwan-Young
    • Journal of the Korea Safety Management & Science
    • /
    • v.8 no.6
    • /
    • pp.1-11
    • /
    • 2006
  • Since Zohar(1980) emphasized the influence of social, organizational, and psychological context in occupational safety and health study, the research in this area tends to be emphasizing the influences of personal and physical interaction. With this research trend, this paper is to examine the relationship between safety climate model and safety accident, and the interactional or moderating effect of personal and physical factor on the above relationship. Author conducted a survey to 292 manufacturing workers in construction industry, and the chief results of statistical analysis are as follows 1) management involvement, safety education, precaution activities, and safety system have negative effects on safety accident, 2) a-type personality has interactional effect on safety accident with communication, precaution activities, and safety system. 3) physical job load has interactional effect on safety accident with precaution activities, and safety system.

Applying industrial safety climate theories to food hygiene and safety management in food service industry (산업 안전분위기 이론의 외식업계 위생안전분위기 관리에의 적용)

  • Ahn, Kwan Young
    • Journal of the Korea Safety Management & Science
    • /
    • v.16 no.3
    • /
    • pp.471-481
    • /
    • 2014
  • This paper reviewed the relationship between safety climate(superior attitude, education, precaution, communication, and job load) and safety performance(safety compliance and safety participation), and the moderating effects of gender and age. Based on the responses from 288 employees, the results of multiple regression analysis appeared as follow; 1) superior attitude effects positively on safety compliance and safety participation, but, job load effects negatively on safety compliance and safety participation. 2) precaution effects positively on safety participation. 3) education and precaution are more positively related with safety compliance and safety participation in female employee than in male employee. 4) education is more positively related with safety compliance and safety participation in older employee than in younger employee.

The relationship between safety climate and accidents, and personal-physical factors' interactional effect (안전분위기-안전사고의 관계 및 인적요인과 물적요인의 상호작용효과)

  • Ahn, Kwan-Young
    • Proceedings of the Safety Management and Science Conference
    • /
    • 2006.11a
    • /
    • pp.151-160
    • /
    • 2006
  • Since Zohar(1980) emphasized the influence of social, organizational, and psychological context in occupational safety and health study, the research in this area tends to be emphasizing the influences of personal and physical interaction. With this research trend, this paper is to examine the relationship between safety climate model and safety accident, and the interactional or moderating effect of personal and physical factor on the above relationship. Author conducted a survey to 292 manufacturing workers in construction industry, and the chief results of statistical analysis are as follows : 1) management involvement, safety education, precaution activities, and safety system have negative effects on safety accident, 2) a-type personality has interactional effect on safety accident with communication, precaution activities, and safety system. 3) physical job load has interactional effect on safety accident with precaution activities, and safety system.

  • PDF

Estimating Litter Carbon Stock and Change on Forest in Gangwon Province from the National Forestry Inventory Data (국가산림자원조사 자료를 활용한 강원도 산림내 낙엽층의 탄소저장량 및 변화량 추정)

  • Lee, Sun Jeoung;Kim, Raehyun;Son, Yeong Mo;Yim, Jong Su
    • Journal of Climate Change Research
    • /
    • v.8 no.4
    • /
    • pp.385-391
    • /
    • 2017
  • This study was conducted to estimate litter carbon stock change from the National Forest Inventory (NFI) data for national greenhouse gas inventory report. Litter carbon stocks were calculated from the NFI dataset in NFI5 (2008) and NFI6 (2013) in Gangwon province. Total carbon stock change of litter was $0.68{\pm}0.71\;t\;C/ha$ from NFI5 (2008) to NFI6 (2013), however, there was no significant difference between the both dataset at 2008 and 2013 year. Litter carbon stock of coniferous stands was higher than deciduous stands in NFI5 (2008) and NFI6 (2013) (P<0.05). This study was limited to pilot study, so we will assess litter carbon stock using more complete data from NFI systems. It can be used as data sources for national greenhouse gas inventory report on forest sector.

Recalculation of Forest Growing Stock for National Greenhouse Gas Inventory (국가 온실가스 통계 산정을 위한 임목축적 재계산)

  • Lee, Sun Jeoung;Yim, Jong-Su;Son, Yeong Mo;Kim, Raehyun
    • Journal of Climate Change Research
    • /
    • v.7 no.4
    • /
    • pp.485-492
    • /
    • 2016
  • For reporting national greenhouse gas inventory in forest sector, the forest growing stock from the National Forest Inventory (NFI) system has used as activity data sources. The National Forest Inventory system was changed from rotation system by province to annual system by 5 years across the country. The forest growing stocks based on the new inventory system produced a different trend compared to the previous estimations. This study was implemented to recalculate previous forest growing stocks for time series consistency at a national level. The recalculation of forest growing stock was conducted in an overlap approach by the IPCC guideline. In order to support the more consistency data, we used calibration factors between applied stand volumes in 1985 and 2012, respectively. As a result, the time series of recalculated forest growing stock was to be consistency using the overlap approach and the calibration factor with the lower middle/middle site index. According to the applied overlap period, however, we will recalculate activity data using more complete data from national forest inventory system.

Development of a Dynamic Downscaling Method using a General Circulation Model (CCSM3) of the Regional Climate Model (MM5) (전지구 모델(CCSM3)을 이용한 지역기후 모델(MM5)의 역학적 상세화 기법 개발)

  • Choi, Jin-Young;Song, Chang-Geun;Lee, Jae-Bum;Hong, Sung-Chul;Bang, Cheol-Han
    • Journal of Climate Change Research
    • /
    • v.2 no.2
    • /
    • pp.79-91
    • /
    • 2011
  • In order to study interactions between climate change and air quality, a modeling system including the downscaling scheme has been developed in the integrated manner. This research focuses on the development of a downscaling method to utilize CCSM3 outputs as the initial and boundary conditions for the regional climate model, MM5. Horizontal/vertical interpolation was performed to convert from the latitude/longitude and hybrid-vertical coordinate for the CCSM3 model to the Lambert-Conformal Arakawa-B and sigma-vertical coordinate for the MM5 model. A variable diagnosis was made to link between different variables and their units of CCSM and MM5. To evaluate the dynamic downscaling performance of this study, spatial distributions were compared between outputs of CCSM/MM5 and NRA/MM5 and statistic analysis was conducted. Temperature and precipitation patterns of CCSM/MM5 in summer and winter showed a similar pattern with those of observation data in East Asia and the Korean Peninsula. In addition, statistical analysis presented that the agreement index (AI) is more than 0.9 and correlation coefficient about 0.9. Those results indicate that the dynamic downscaling system built in this study can be used for the research of interaction between climate change and air quality.

Prediction of the Optimal Growth Site and Estimation of Carbon Stocks for Quercus acuta in Wando Area (완도지역의 붉가시나무 생육 적지예측 및 탄소저장량 추정)

  • Hwang, Jeong-Sun;Kang, Jin-Teak;Son, Yeong-Mo;Jeon, Hyun-Sun
    • Journal of Climate Change Research
    • /
    • v.6 no.4
    • /
    • pp.319-330
    • /
    • 2015
  • This study was carried out to predict the optimal growth site and estimate carbon stocks of Quercus acuta, evergreen broad-leaved trees in warm temperate zone according to climate change. The criterion for the optimal site prediction was created by quantification method with quantitative and qualitative data, collected from growth factors of stands and environmental factors of survey sites of 42 plots in Q. acuta by study relationship between growth of tree and site environmental factors. A program for the optimal site prediction was developed by using GIS engine tools. To prediction of the suitable growth site of Quercus acuta, developed program in this study applied to Wando in Jeollanam-do, distributing a various evergreen bread-leaved trees of warm temperate zone. In the results from analysis of the optimal site prediction on Q. acuta, the characteristics of the optimal site showed as follows; site environmental features of class I (the best site class for Q. acuta) was defined as 401 ~ 500 m of altitude, $21{\sim}25^{\circ}$ of slope with above hillside, residual of deposit convex of slope type with west of aspect. The area and carbon stocks of optimal site prediction by class for Q. acuta in classI showed 147.1 ha (2.5%), total 316.5 tC/ha, total $1,161tCO_2/ha/yr$ of class I, 2,703.5 ha (46.3%), total 5,817.4 tC/ha, total $21,331tCO_2/ha/yr$ of class II, 2,845.5 ha (48.6%), total 6,123.0 tC/ha, total $2,845.5tCO_2/ha/yr$ of class III and 153.7 ha (2.6%), total 330.7 tC/ha, total $1,213.7tCO_2/ha/yr$ of class IV.