• Title/Summary/Keyword: Cleaning Effect

Search Result 628, Processing Time 0.037 seconds

Evaluation of Material Durability by Identifying the Relationship between Contact Angle after Wear and Self-cleaning Effect Using Rolling Wear Tester (구름 마모시험 장비(Rolling wear tester)를 이용한 마모 후의 접촉각과 자가세정 효과와의 관계 규명을 통한 재료 내구성 평가)

  • Kyeongryeol Park;Yong Seok Choi;Seongmin Kang;Unseong Kim;Kyungeun Jeong;Young Jin Park;Kyungjun Lee
    • Tribology and Lubricants
    • /
    • v.39 no.6
    • /
    • pp.256-261
    • /
    • 2023
  • This study is conducted to evaluate the durability of superhydrophobic surfaces, with a focus on two aspects: contact angle measurement and self-cleaning-performance analysis. Superhydrophobic copper and aluminum surfaces are fabricated using the immersion method and subjected to a rolling wear test, in which a 2 kg weight is placed on a rolling tester, under loaded conditions. To evaluate their durability, the contact angles of the specimens are measured for each cycle. In addition, the surface deformation of the specimens before and after the test is analyzed through SEM imaging and EDS mapping. The degradation of the self-cleaning performance is evaluated before and after the wear test. The results show that superhydrophobic aluminum is approximately 4.5 times more durable than superhydrophobic copper; the copper and aluminum specimens could endure 21,000 and 4,300 cycles of wear, respectively. The results of the self-cleaning test demonstrate that superhydrophobic aluminum is superior to superhydrophobic copper. After the wear test, the self-cleaning rates of the copper and aluminum specimens decrease to 72.7% and 83.4%, respectively. The relatively minor decrease in the self-cleaning rate of the aluminum specimen, despite the large number of wear cycles, confirms that the superhydrophobic aluminum specimen is more durable than its copper counterpart. This study is expected to aid in evaluating the durability of superhydrophobic surfaces in the future owing to the advantage of performing wear tests on superhydrophobic surfaces without damaging the surface coating.

Hierarchical Nanostructure on Glass for Self Cleaning and Antireflective Properties

  • Xiong, Junjie;Das, Sachindra Nath;Kar, Jyoti Prakash;Choi, Ji-Hyuk;Myoung, Jae-Min
    • Proceedings of the Materials Research Society of Korea Conference
    • /
    • 2010.05a
    • /
    • pp.24.1-24.1
    • /
    • 2010
  • In practical operation, the exposed surfaces may get dirty thus degrade the performance of devices. So the combination of self cleaning and antireflection is very desirable for use in outdoor photovoltaic and displaying devices, self cleaning windows and car windshields. For the purpose of self cleaning, the surface needs to be either superhydrophobic or superhydrophilic. However, in practice AR in the visible region and self cleaning are a pair of competitive properties. To satisfy the requirements for superhydrophobic or superhydrophilic surfaces, high surface roughness is required. But it usually cause severely light scattering. Photo-responsive coatings (TiO2, ZnO etc.) can lead to superhydrophilic. However, the refractive indices are high. Thus for porous structure, controlling pore size in the underwavelength scale to reduce the light scattering is very crucial for highly transparent and self cleaning antireflection coating. Herein, we demonstrate a simple method to make high performance broadband antireflection layer on the glass surface, by "carving" the surface by hot alkali solution. Etched glass has superhydrophilic surface. By chemical modification, it turns to superhydrophobic. Enhanced transparency (up to 97%) in a broad wavelength range was obtained by short time etching. Also antifogging effect has been demonstrated, which may offer advantage for devices working at high humidity environment or underwater. Compositional dependence of the properties was observed by comparing three different commercially available glasses.

  • PDF

Evaluate the Effect of Megasonic Cleaning on Pattern Damage (메가소닉 세정시 발생되는 패턴손상 최소화에 대한 연구)

  • Yu, Dong-Hyun;Ahn, Young-Ki;Ahn, Duk-Min;Kim, Tae-Sung;Lee, Hee-Myoung;Kim, Jeong-In;Lee, Yang-Lae;Kim, Hyun-Se;Lim, Eui-Su
    • Proceedings of the KSME Conference
    • /
    • 2008.11b
    • /
    • pp.2511-2514
    • /
    • 2008
  • As the minimum feature size decreases, techniques to avoid contamination and processes to maintain clean wafer surfaces have become very important. The deposition and detachment of nanoparticles from surfaces are major problem to integrated circuit fabrication. Therefore, cleaning technology which reduces nanoparticles is essential to increase yield. Previous megasonic cleaning technology has reached the limits to reduce nanoparticles. Megasonic cleaning is one of the efficiency method to reduce contamination nanoparticle. Two major mechanisms are active in a megasonic cleaning, namely, acoustic streaming and cavitation. Acoustic streaming does not lead to sufficiently strong force to cause damage to the substrates or patterns. Sonoluminescence is a phenomenon of light emission associated with the cavitation of a bubble under ultrasound. We studied a correlation between sonoluminescence and sound pressure distribution for the minimum of pattern damage in megasonic cleaning.

  • PDF

The Effect of Additives in post Ru CMP Cleaning (Post Ru CMP Cleaning에서의 첨가제에 따른 영향)

  • Cho, Byung-Gwun;Kim, In-Kwon;Kim, Tae-Gon;Park, Jin-Goo
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2007.06a
    • /
    • pp.557-557
    • /
    • 2007
  • 최근 Ruthenium (Ru)은 높은 화학적 안정성, 누설전류에 대한 높은 저항성, 저유전체와의 높은 안정성 등과 같은 특성으로 인해 캐패시터의 하부전극으로 각광받고 있다. 이렇게 형성된 Ru 하부전극은 각 캐패시터간의 분리와 평탄화를 위해 CMP 공정이 도입되게 되었다. 이러한 CMP 공정후에는 화학적 또는 물리적 상호작용에 의해 웨이퍼 표면에 오염물이 발생할 수 있다. CMP 공정중에 공급되는 슬러리에는 부식액, pH 적정제, 연마입자등이 첨가되는데 이때 사용된 연마입자는 CMP 공정후 입자오염을 유발할 수 있다. 그러므로, CMP 공정후에는 이러한 오염으로 인해 cleaning 공정이 반드시 필요하게 되었다. 하지만, Post Ru CMP cleaning에 대한 연구는 아직 미비한 상태이다. 그리하여 본 연구에서는 post Ru CMP cleaning에 대한 연구와 cleaning solution 그리고 첨가제에 따른 영향을 살펴보았다.

  • PDF

Experimental Study of Nd:YAG Laser Cleaning System for Removing Acrylic Resin and Surface Characteristic (Nd:YAG 레이저를 이용한 금속유물에 코팅된 아크릴수지의 제거 및 표면 특성 연구)

  • Lee, Hye-Youn;Cho, Nam-Chul
    • Journal of Surface Science and Engineering
    • /
    • v.45 no.4
    • /
    • pp.143-150
    • /
    • 2012
  • Laser cleaning have been found to be a useful cleaning tool to remove contaminants without inducing damage to the substrate and making secondary pollutant. In this study, the effect of Nd:YAG laser cleaning system, emitting at 1064 nm and 532 nm, on acrylic resin applied onto copper coupons and pieces of bronze was investigated. The samples after laser cleaning tests were examined using microscopy, FT-IR, SEM-EDS. As a result, the acrylic resin could be removed from most of the samples at low laser energy density. Laser wavelength 532 nm was more effective than 1064 nm because of using lower laser energy density, which could reduce heat damage to substrates. Although the acrylic resin was easily removed, it revealed melted surfaces and removed bronze patina which must remain. The problems should be solved by future studies using different laser system or laser wavelengths.

Reduction of energy demand for UF cross-flow membranes in MBR by sponge ball cleaning

  • Issa, Mohammad;Geissen, Sven-Uwe;Vogelpohl, Alfons
    • Membrane and Water Treatment
    • /
    • v.12 no.2
    • /
    • pp.65-73
    • /
    • 2021
  • Sponge ball cleaning can generate an abrasion effect, which leads to an attractive increasing in both permeate flux and membrane rejection. The aim of this study was to investigate the influence of the daily sponge ball cleaning (SBC) on the performance of different UF cross-flow membrane modules integrated with a bioreactor. Two 1"-membrane modules and one 1/2"-membrane module were tested. The parameters measured and controlled are temperature, pH, viscosity, particle size, dissolved organic carbon (DOC), total suspended solids (TSS), and permeate flux. The permeate flux could be improved by 60%, for some modules, after 11 days of daily sponge ball cleaning at a transmembrane pressure of 350 kPa and a flow velocity of 4 m/s. Rejection values of all tested modules were improved by 10%. The highest permeate flux of 195 L/㎡.h was achieved using a 1"-membrane module with the aid of its negatively charged membrane material and the daily sponge ball cleaning. In addition, the enhancement in the permeate flux caused by daily sponge ball cleaning improved the energy specific demand for all tested modules. The negatively charged membrane showed the lowest energy specific demand of 1.31 kWh/㎥ in combination with the highest flux, which is a very competitive result.

Analysis of Insulation Condition in High Voltage Motor Stator Windings Following Cleaning and Insulation Reinforcement (세척과 절연보강에 따른 고압전동기 고정자 권선의 절연상태 분석)

  • Kim, Hee-Dong
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.25 no.6
    • /
    • pp.474-480
    • /
    • 2012
  • Diagnostic tests were performed on two high voltage(HV) motor stator windings. These tests included the measurement of insulation resistance, polarization index, AC current, dissipation factor($tan{\delta}$) and partial discharge(PD) magnitude. Surface contamination of HV motor stator windings has an effect on the AC current and $tan{\delta}$. When the stator windings were finished cleaning and insulation reinforcement, the increase rate of AC current(${\Delta}I$) and dissipation factor(${\Delta}tan{\delta}$) were very small compared to those before cleaning. However, the PD magnitude remained the same. These tests show that cleaning and insulation reinforcement of HV motor stator windings can reduce the insulation failure.

Experimental analysis of flow field for laser shock wave cleaning (레이저 충격파 클리닝에서 발생되는 유동장의 실험적 해석)

  • 임현규;장덕석;김동식
    • Laser Solutions
    • /
    • v.7 no.1
    • /
    • pp.29-36
    • /
    • 2004
  • The dynamics of laser-induced plasma/shock wave and the interaction with a surface in the laser shock cleaning process are analyzed by optical diagnostics. Shock wave is generated by a Q-switched Nd:YAG laser in air or with N$_2$, Ar, and He injection into the focal spot. The shock speed is measured by monitoring the photoacoustic probe-beam deflection signal under different conditions. In addition, nanosecond time-resolved images of shock wave propagation and interaction with the substrate are obtained by the laser-flash shadowgraphy. The results reveal the effect of various operation parameters of the laser shock cleaning process on shock wave intensity, energy-conversion efficiency, and flow characteristics. Discussions are made on the cleaning mechanisms based on the experimental observations.

  • PDF

A Study of Cleaning Technology for Zirconium Scrap Recycling in the Nuclear Industry (원자력산업에서 지르코늄 스크랩 재활용을 위한 세정기술에 관한 연구)

  • Lee, Ji-Eun;Cho, Nam-Chan;An, Chang-Mo;Noh, Jae-Soo;Moon, Jong-Han
    • Clean Technology
    • /
    • v.19 no.3
    • /
    • pp.264-271
    • /
    • 2013
  • In this study, we optimized the removal condition of contaminants attached on the scrap surface to recycle the scrap generated from the Zr alloy tube manufacturing process back to the nuclear grade. The main contaminant is remnant of watersoluble cooling lubricant that is used in the pilgering manufacture during the tube production, and it is assumed to be compressed and carbonized on the surface of tube. Zirlo alloy tube of ${\phi}9.50mm$, which has high occurrence frequency of scrap, was selected as the object to be cleaned, and cleaning abilities of reagents were evaluated by measuring the characteristics of contaminants remained and by analyzing the surface of the tube after cleaning process. For evaluation of each cleaning agent, we selected two types of sodium hydroxide series and three types of potassium hydroxide series. Furthermore, to confirm dependence on tempe-rature and ultrasonic intensities, cleaning at the room temperature, $40^{\circ}C$, and $60^{\circ}C$ was conducted, and results showed that higher the cleaning temperature and higher the ultrasonic intensity, better the cleaning effect. As a result of the bare-eye inspection, while the use of sodium hydroxide provided satisfactory condition on the tube surface, the use of potassium hydroxide series provided satisfactory condition on the tube surface only when the ultrasonic intensity was over 120 W. In the cleaning effect analysis using the gravimetric method, cleaning efficiency of sodium hydroxide series was as high as 97.6% ($60^{\circ}C$, 120 W), but since the tube surface condition was poor after the use of potassium hydroxide, the gravimetric method was not appropriate. In the analytical result of surface contaminants on the tube surface, C, O, Ca, and Zr were detected, and mainly C and O dominated the proportion of contaminants. It was also found that the degree of cleaning on the tube affected the componential ratio of C and O; if the degree of cleaning is high, or if cleaning is well-conducted, the proportion of C is decreased, and the proportion of O is increased. Based on these results, optimal cleaning for application in the industry can be expected by categorizing cleaning process into three steps of Alkali cleaning, Rinsing, and Drying and by adjusting cleaning parameters in each step.

A Compacted In-line Wet Etch/Cleaning System With a Reverse Moving Control System

  • Im, Seung-Hyeok;Cho, Eou-Sik;Kwon, Sang-Jik
    • 한국정보디스플레이학회:학술대회논문집
    • /
    • 2008.10a
    • /
    • pp.863-866
    • /
    • 2008
  • For the cost reduction in the fabrication of display panels, a reverse moving system was equipped to a compacted in-line wet etch/cleaning system. For the effect of the alternating movement of substrate on the wet etch process, ITO layers were etched in various moving modes of substrates and the results were compared and analyzed.

  • PDF