• Title/Summary/Keyword: Clean tube

Search Result 73, Processing Time 0.021 seconds

Pyrolysis Characteristics of Oil Shale (Oil shale의 열분해 특성 연구)

  • Roh, Seon Ah;Yun, Jin Han;Keel, Sang In;Lee, Jung Kyu;Kim, Han Seok
    • Clean Technology
    • /
    • v.24 no.4
    • /
    • pp.365-370
    • /
    • 2018
  • Oil shale is the sedimentary rock containing kerogen, which is one of the abundant unconventional fuel. In the pyrolysis process, oil, gas and coke are produced from the decomposition of oil shale. In this study, TGA and the continuous pyrolysis of oil shale have been investigated for the clean conversion of oil shale. Effects of reaction temperature and residence time on the pyrolysis conversion and oil production rate have been determined. Conversion of oil shale increases with increasing the reaction temperature and residence time. Optimum conditions for oil production were reaction temperature of $450{\sim}500^{\circ}C$ at the residence time of 30 min.

Experimental Study of Transition to Secondary Acoustic Instability at Downward-Propagating Premixed Flame in a Tube (튜브 내 하향 전파하는 예혼합 화염의 이차 열음향 불안정성 천이에 관한 실험적 연구)

  • Park, Juwon;Kim, Daehae;Park, Dae Geun;Yoon, Sung Hwan
    • Journal of the Korean Society of Marine Environment & Safety
    • /
    • v.26 no.7
    • /
    • pp.915-921
    • /
    • 2020
  • Thermoacoustic instability caused by air conditioning in a combustion chamber has emerged as a problem that must be solved to establish a stable combustion system. Thermoacoustic instability is largely divided into primary and secondary acoustic instability. In this study, an experimental study of the effects of heat losses was conducted to investigate the mechanism of secondary acoustic instability. To generate the secondary acoustic instability, a quarter-wavelength resonator with one open end and one closed end was used, and the inside of the resonator was filled with premixed gases. Subsequently, secondary acoustic instability with downward-propagating flames could be realized via thermal expansion on the burnt side. To control heat losses qualitatively, an additional co-axial tube was installed in the resonator with air or nitrogen supply. Therefore, additional diffusion flames can be formed at the top of the resonator depending on the injection of the oxidizer into the co-axial tube when rich premixed flames are used. Consequently, secondary acoustic instability could not be achieved by increasing heat losses to the ambient when the additional diffusion flame was not formed, and the opposite result was obtained with the additional diffusion flame.

An Overview of The Commercialisation of The Spray Forming Process

  • Leatham, Alan
    • Journal of Powder Materials
    • /
    • v.3 no.4
    • /
    • pp.227-232
    • /
    • 1996
  • (i) The development of a metallurgical bond during the spray forming of clad products has offered the possibility of manufacturing large rolls, including those used in hot and cold strip mills. Small rolls are already being produced in Japan. (ii) Technical developments, including the use-of-multi-atomizers have resulted in the elimination of porosity from the internal bore of a sprayed tube. Bimetallic tubing can also be manufactured and the installation of a 4.5 ton tube plant in the USA should provide low operation costs. (iii) Spray forming offers a potentially low cost manufacturing route for superalloy ring/casing components in high strength superalloys. (iv) A large pilot plant has been built for the spray forming of ultra-clean superalloys for turbine disc applications. (v) Using twin-atomizing technology, special steel billets have been spray formed up to 400mm diameter with deposition yields in excess of 90%. (vi) Al/Si alloy extrusion billets with excellent dimensional tolerances are being manufactured for large scale automotive applications. Several new aluminum alloys have also been developed, including high strength, low density and low cocfficient of expansion materials. (vii) New copper alloys have been developed and pilot plants are in operation to produce these alloys once markets have become established.

  • PDF

Char Oxidation Characteristics of Ashless Coal in Drop Tube Furnace (DTF를 이용한 초청정 석탄 촤 산화 반응률 특성 연구)

  • Kim, Sang-In;Lee, Byoung-Hwa;Lim, Ho;Yu, Da-Yeon;Lee, Si-Hyun;Jeon, Chung-Hwan
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.36 no.7
    • /
    • pp.675-681
    • /
    • 2012
  • The char oxidation characteristics of ashless coal with a relatively low ash content and high heating value were experimentally investigated at several temperatures (from $900^{\circ}C$ to $1300^{\circ}C$), in various oxygen concentrations (from 10% to 30%) under atmospheric pressure in a drop tube furnace. The char reaction rate was calculated from the exhaust gas concentrations (CO, $CO_2$) measured by FT-IR, and the particle temperature was measured by the two-color method. In addition, the activation energy and pre-exponential factor of ashless coal char were also calculated based on the Arrhenius equation. The results show that higher temperature and oxygen concentration result in a higher reaction rate of ashless coal, and the activation energy of ashless coal char is similar to that of bituminous coal.

Study on the Unburned Carbon and NOx emission of High Moisture Coal (고수분탄의 건조에 따른 미연분 및 NOx 배출 특성에 관한 연구)

  • Ahn, Seok-Gi;Kim, Jung-Woo;Kim, Gyu-Bo;Lee, Si-Hyun;Jeon, Chung-Hwan
    • Journal of Energy Engineering
    • /
    • v.25 no.4
    • /
    • pp.53-61
    • /
    • 2016
  • Unburned Carbon(UBC) and NOx emissions from High-moisture coal and Dried coal were investigated in Drop Tube Furnace(DTF). When the same amount of the High-moisture coal and Dried coal were oxidized in DTF, the results show that UBC and NOx emissions of Dried coal case is higher than High-moisture coal case. As the moisture in coal decreases from 40% to 10%, the average gas temperature increases but the moisture concentration in DTF decreases. As the wall temperature increases from $900^{\circ}C$ to $1500^{\circ}C$, the UBC decreases and NOx emissions increases. Especially, the difference for UBC between High-moisture coal and Dried coal decreases with increasing wall temperature.

Shearing Conditions on the Interface of a Spherical Water Drop Sinking in Silicone Oil

  • Uemura, Tomomasa;Yamauchi, Makoto
    • Journal of Mechanical Science and Technology
    • /
    • v.15 no.12
    • /
    • pp.1845-1852
    • /
    • 2001
  • This paper deals with the experiment to obtain quantitative information about conditions of the interface between a water drop and surrounding oil. Velocity distributions in very close region of the interface are measured by introducing a new illumination technique and a telecentric lens. It enables precise measurements of velocity distributions in the close region to the interface. Although the measured velocity distributions exhibit strong influence from the solid wall of an experimental tube, the coincidence of inner and outside velocities on the interface is clearly confirmed for the clean interface. The shearing stresses on the interface, which are proportional to the velocity gradient normal to the interface, clearly show conditions of contaminated interface, which can be divided into two parts. From front stagnation point to somewhere near a separation point, the distribution of shearing stresses is well coincide with that of the Hadamard's analytical solution, while the distribution on the latter part of the interface sows quite different feature, which is supposed to be strongly influenced by contamination of the surface.

  • PDF

Destruction of $SO_2$ and NO on the Carbon-bed by Microwave

  • Kim, Dong-Sik;Lee, Dong-Kyu
    • Carbon letters
    • /
    • v.1 no.1
    • /
    • pp.31-35
    • /
    • 2000
  • [ $SO_2$ ]and NO gases that come from the flue gases of most of all industrial combustion processes are harmful to everything include person and industrial facilities. For the simplification of the environmental clean-up processes, we studied the decomposition process by microwave. The microwave can destroy molecules into elementary atoms and offers energy to the atoms to react with carbons. Since the microwave is not absorbed into quartz tube and metallic chamber, the air pollution gases can be removed with much lower energy than in the case of conventional methods. We studied the decomposition of $SO_2$ and NO gases on the carbon beds by microwave. In the microwave field, the gases can be decomposed to form other compounds, such as elementary sulfur, nitrogen, carbon monoxide and carbon dioxide. It was found that CO gas is formed at higher temperature than is $CO_2$ gas, so it needs to control the bed temperature depend on products that we want to get.

  • PDF

Evaluation of a Propulsion Force Coefficients for Transportation of Wafers in an Air Levitation System (공기부상방식 반도체 웨이퍼 이송시스템의 추진력계수)

  • 문인호;황영규
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.16 no.9
    • /
    • pp.820-827
    • /
    • 2004
  • The propulsion force acting on a wafer in an air levitation system was measured accurately and then, the corresponding force coefficient was determined. The theoretical propulsion force on the wafer bottom surface were obtained by CFD simulations and from these results the propulsion force coefficient was deduced. The transportation velocity of a wafer was estimated by using both experimental and numerical force coefficients, for various air velocity of nozzle injection. When the numerical results are compared to the experimental data, the numerical results agree well Quantitatively.

Development of Porous Metal Materials and Applications

  • Fang, Y.;Wang, H.;Zhou, Y.;Kuang, C.
    • Proceedings of the Korean Powder Metallurgy Institute Conference
    • /
    • 2006.09a
    • /
    • pp.599-600
    • /
    • 2006
  • This paper described the state of art of porous metal materials, the typical manufacturing technologies and performances of sintered metal porous materials, with emphasis on the recent research achievements of CISRI in development of porous metal materials. High performance porous metal materials, such as metallic membrane, sub-micron asymmetric composite porous metal, large dimensional and structure complicated porous metal aeration cones and tube, metallic catalytic filter elements, lotus-type porous materials, etc, have been developed. Their applications in energy industry, petrochemical industry, clean coal process and other industrial fields were introduced and discussed.

  • PDF

Biological Monitoring of Human Exposure to Volatile Halogenated Hydrocarbons Using Urinalysis with Capillary GC-ECD

  • Jung, Won-Tae;Sohn, Dong-Hun
    • Archives of Pharmacal Research
    • /
    • v.15 no.2
    • /
    • pp.109-114
    • /
    • 1992
  • For the risk assessment of human exposure to volatile halogenated hydrocarbons, a dynamic purge trap/on-column cryofocusing method using capillary gas chromatograph-$^{63}Ni$ electron capture detector and thermal desorption unit was applied to analyze the free forms, metabolites of 1, 1, 2-trichloroethylene and 1, 1, 2, 2-tetrachloroethylene. The urine sample was diluted with distilled water, hydrolyzed and sealed. Then the inert gas was infused to purge out free 1, 1, 2-trichloroethylene, free 1, 1, 2, 2-tetrachloroethylene and urichloroethanol. These compounds were trapped to $Tenax^R$ / GC-gas trap device throughout clean up tube. Being undertectable to gas chromatograph directly, trichloroacetic acid was methyl esterificated and trapped in the manner above mentioned. The optimal incubation time to get best recovery of methyl ester was 4 hours at $60^circ$C. The concentrations of free volatile halogenated hydrocarbons and their metabolites in urine were obtained of free volatile halogenated hydrocarbons and their metabolites in urine were obtained from 5 healthy volunteers. This analytical method is expected to make the biological monitoring more precise and convenient.

  • PDF