DOI QR코드

DOI QR Code

Pyrolysis Characteristics of Oil Shale

Oil shale의 열분해 특성 연구

  • Roh, Seon Ah (Environment System Research Division, Korea Institute of Machinery and Materials (KIMM)) ;
  • Yun, Jin Han (Environment System Research Division, Korea Institute of Machinery and Materials (KIMM)) ;
  • Keel, Sang In (Environment System Research Division, Korea Institute of Machinery and Materials (KIMM)) ;
  • Lee, Jung Kyu (Environment System Research Division, Korea Institute of Machinery and Materials (KIMM)) ;
  • Kim, Han Seok (Environment System Research Division, Korea Institute of Machinery and Materials (KIMM))
  • 노선아 (한국기계연구원 환경시스템연구본부) ;
  • 윤진한 (한국기계연구원 환경시스템연구본부) ;
  • 길상인 (한국기계연구원 환경시스템연구본부) ;
  • 이정규 (한국기계연구원 환경시스템연구본부) ;
  • 김한석 (한국기계연구원 환경시스템연구본부)
  • Received : 2018.10.23
  • Accepted : 2018.12.05
  • Published : 2018.12.31

Abstract

Oil shale is the sedimentary rock containing kerogen, which is one of the abundant unconventional fuel. In the pyrolysis process, oil, gas and coke are produced from the decomposition of oil shale. In this study, TGA and the continuous pyrolysis of oil shale have been investigated for the clean conversion of oil shale. Effects of reaction temperature and residence time on the pyrolysis conversion and oil production rate have been determined. Conversion of oil shale increases with increasing the reaction temperature and residence time. Optimum conditions for oil production were reaction temperature of $450{\sim}500^{\circ}C$ at the residence time of 30 min.

Oil shale은 kerogen을 함유한 퇴적암으로 대표적인 비재래 에너지자원으로 알려져 있다. 열분해 공정을 통하여 oil shale이 분해되면 oil, gas 및 coke를 생성하게 된다. 본 연구에서는 oil shale의 청정 전환기술을 개발하기 위하여 oil shale의 TGA 및 연속 열분해 연구를 수행하였다. Oil shale의 열분해 전환율에 대한 반응 온도 및 체류시간의 영향을 살펴보고 oil의 생성율을 살펴보았다. Oil shale의 열분해 전환율은 온도와 체류시간에 따라 증가하였으며 $450{\sim}500^{\circ}C$, 체류시간 30 min의 조건에서 최대 oil 생산 수율을 나타내었다.

Keywords

CJGSB2_2018_v24n4_365_f0001.png 이미지

Figure 1. Green river oil shale. (Enefit American oil Corp., Utah, USA).

CJGSB2_2018_v24n4_365_f0002.png 이미지

Figure 2. Oil shale sorted by the size.

CJGSB2_2018_v24n4_365_f0003.png 이미지

Figure 3. Rotary tube furnace.

CJGSB2_2018_v24n4_365_f0004.png 이미지

Figure 4. Typical TG and DTG curves of oil shale (N2 atmosphere, 300 mL min-1).

CJGSB2_2018_v24n4_365_f0005.png 이미지

Figure 5. Effect of temperature on pyrolysis conversion.

CJGSB2_2018_v24n4_365_f0006.png 이미지

Figure 6. Effect of the residence time on pyrolysis conversion.

CJGSB2_2018_v24n4_365_f0007.png 이미지

Figure 8. Effect of the residence time on oil and gas production rate.

CJGSB2_2018_v24n4_365_f0008.png 이미지

Figure 7. Oil product rate in oil shale pyrolysis product.

CJGSB2_2018_v24n4_365_f0009.png 이미지

Figure 9. Effect of oil shale ash addition.

Table 1. Analysis of oil shale

CJGSB2_2018_v24n4_365_t0001.png 이미지

Table 2. Analysis of produced gas from oil shale

CJGSB2_2018_v24n4_365_t0002.png 이미지

References

  1. Ballice, L., "Effect of Demineralization on Yield and Composition of the Volatile Products Evolved from Temperature-Programmed Pyrolysis Of Beypazari (Turkey) Oil Shale," Fuel Proc. Technol., 86(6), 673-690 (2005). https://doi.org/10.1016/j.fuproc.2004.07.003
  2. Park, K. I, Han, S. D., Han, H. J., Kang, K. S., Bae, W. S., and Rhee, Y. W., "A Study on the Trend of Technology for the Treatment of Oil from Oilsands by Patent Analysis," Clean Technol., 15(3), 210-223 (2009).
  3. Jiang, X. M., Han, X. X., and Cui, Z. G., "Progress and Recent Utilization Trends in Combustion of Chinese Oil Shale," Prog. Energy and Combust. Sci., 33, 552-579 (2007). https://doi.org/10.1016/j.pecs.2006.06.002
  4. Han, X., Kulaots, I., Jiang, X., and Suuberg, E. M., "Review of Oil Shale Semicoke and Its Combustion Utilization," Fuel, 126, 143-161 (2014). https://doi.org/10.1016/j.fuel.2014.02.045
  5. http://ostseis.anl.gov/guide/oilshale/(access date: December 04, 2018)
  6. Irha, N., Uibu, M., Jefimova, J., Raado, L. M., Hain, T., and Kuusik, R., "Oil Shale Ash Based Stone Formation-Hydration, Hardening Dynamics and Phase Transformations," Oil Shale, 31(1), 91-101 (2014). https://doi.org/10.3176/oil.2014.1.09
  7. Huang, Y., Zhang, M., Lyu, J., Yang, H., and Liu, Q., "Modeling Study on Effects of Intraparticle Mass Transfer and Secondary Reactions on Oil Shale pyrolysis," Fuel, 221, 240-248 (2018). https://doi.org/10.1016/j.fuel.2018.02.076
  8. Lille, U., "Current Knowledge on the Origin and Structure of Estonian Kukersite Kerogen," Oil Shale, 20(3), 253-263 (2003).
  9. Lee, H. Y., Kim, S. W., Lee, W. S., and Lee, D. G., "A Review on the Reserach and Development of Oil Shale," Korean J. Petrol. Geol., 14, 21-35 (2008).
  10. Umeki, K., Roh, S. A., Min, T. J., Namioka, T., and Yoshikawa, K., "A Simple Expression for the Apparent Reaction Rate of Large Wood Char Gasification with Steam," Bioresour. Technol., 101, 4187-4192 (2010). https://doi.org/10.1016/j.biortech.2010.01.051
  11. Roh, S. A., Kim, W. H., Yun, J. H., Min, T. J., Kwak, Y. H., and Seo, Y. C., "Pyrolysis and Gasification-Melting of Automobile Shredder Residue," J. Air Waste Manag. Assoc., 63, 1137-1147 (2013). https://doi.org/10.1080/10962247.2013.801373
  12. http://www.revodix.co.kr/wp-content/uploads/2015/08/NAB-20.pdf (access date: December 04, 2018)
  13. Syed, S., Qudaih, R., Talab, I., and Janajreh, I., "Kinetics of Pyrolysis and Combustion of Oil Shale Sample from Thermogravimetric Data," Fuel, 90, 1631-1637 (2011). https://doi.org/10.1016/j.fuel.2010.10.033
  14. Na, J. G., and Chung, S. H., "Characteristics of Oil Shale as Unconventional Oil Resources," J. Korean Inst. Resour. Recycl., 17, 62-67 (2008).
  15. Dogan O. M., and Uysal, Z. B., "Non-isothermal Pyrolysis Kinetics of Three Turkish Oil Shales," Fuel, 75(12), 1424-1428 (1996). https://doi.org/10.1016/0016-2361(96)00089-0