• 제목/요약/키워드: Clean technology

Search Result 2,349, Processing Time 0.282 seconds

Technology for the Preparation of Ash-free Coal from Low Rank Coal(LRC) (저등급 석탄으로부터 초청정석탄 제조 기술)

  • Lee, Sihyun;Kim, Sangdo
    • Korean Chemical Engineering Research
    • /
    • v.46 no.3
    • /
    • pp.443-450
    • /
    • 2008
  • Efficient use of low rank coals (LRC) have been investigated as a method to cope with recent high oil price. Among the coals used in industry, lignite and sub-bituminous coals are belong to the LRC, and have abundant deposit and are distributed worldwide, but high moisture contents and self ignition properties inhibits their utilization. In this paper, chemical coal cleaning to produce ash-free coal from LRC has been investigated. Two technologies, that is, UCC(Ultra Clean Coal) process removing ash from coal and Hyper Coal process extracting combustibles from coal were compared with. UCC process has merits of simple and reliable when it compared with Hyper Coal process, but the remaining ash contents werehigher than Hyper Coal. Hyper Coal has ash contents under the 200ppm when raw coal is treated with appropriate solvent and ion exchange materials to remove alkali materials in extracted solution. The ash-free coal which is similar grade with oil can be used as alternate oil in the industry, and also used as a high grade fuel for IGCC, IGFC and other advanced combustion technology.

Ultrasonic Cavitation Behavior and its Degradation Mechanism of Epoxy Coatings in 3.5 % NaCl at 15 ℃

  • Jang, I.J.;Jeon, J.M.;Kim, K.T.;Yoo, Y.R.;Kim, Y.S.
    • Corrosion Science and Technology
    • /
    • v.20 no.1
    • /
    • pp.26-36
    • /
    • 2021
  • Pipes operating in the seawater environment faces cavitation degradation and corrosion of the metallic component, as well as a negative synergistic effect. Cavitation degradation shows the mechanism by which materials deteriorate by causing rapid change of pressure or high-frequency vibration in the solution, and introducing the formation and explosion of bubbles. In order to rate the cavitation resistance of materials, constant conditions have been used. However, while a dynamic cavitation condition can be generated in a real system, there has been little reported on the effect of ultrasonic amplitude on the cavitation resistance and mechanism of composites. In this work, 3 kinds of epoxy coatings were used, and the cavitation resistance of the epoxy coatings was evaluated in 3.5% NaCl at 15 ℃ using an indirect ultrasonic cavitation method. Eleven kinds of mechanical properties were obtained, namely compressive strength, flexural strength and modulus, tensile strength and elongation, Shore D hardness, water absorptivity, impact test, wear test for coating only and pull-off strength for epoxy coating/carbon steel or epoxy coating/rubber/carbon steel. The cavitation erosion mechanism of epoxy coatings was discussed on the basis of the mechanical properties and the effect of ultrasonic amplitude on the degradation of coatings.

Intergranular Corrosion Behavior of Medium and Low Carbon Austenitic Stainless Steel (오스테나이트계 중탄소 및 저탄소 스테인리스강의 입계부식 거동 분석)

  • Won, S.Y.;Kim, G.B.;Yoo, Y.R.;Choi, S.H.;Kim, Y.S.
    • Corrosion Science and Technology
    • /
    • v.21 no.3
    • /
    • pp.230-241
    • /
    • 2022
  • Austenitic stainless steel has been widely used because of its good corrosion resistance and mechanical properties. However, intergranular corrosion can occur if the alloy is welded or aged. The objective of this study was to determine intergranular corrosion behaviors of austenitic medium carbon (0.05 wt%) and low carbon (0.02 wt%) stainless steel aged at several conditions. Alloys were evaluated according to ASTM A262 Practice A, ISO 12732 DL-EPR (double loop-electrochemical potentiokinetic reactivation) test, and ASTM A262 Practice C. The degree of sensitization and intergranular corrosion rate were obtained. The relationship between the degree of sensitization and the intergranular corrosion rate showed a very large fluctuation. Such behavior might be related to whether two-dimension tests or three-dimension tests were performed. On the other hand, regardless of carbon content of alloys, when the intergranular corrosion rate increased, the degree of sensitization also increased. However, the DL-EPR test showed a higher sensitivity than the Huey test for differentiating the intergranular corrosion property at a low intergranular corrosion rate, while the Huey test had a higher sensitivity than the DL-EPR test for distinguishing the intergranular corrosion property at a high intergranular corrosion rate.

Effect of Solution Temperature on the Cavitation Degradation Properties of Epoxy Coatings for Seawater Piping

  • Jeon, J.M.;Yoo, Y.R.;Jeong, M.J.;Kim, Y.C.;Kim, Y.S.
    • Corrosion Science and Technology
    • /
    • v.20 no.6
    • /
    • pp.335-346
    • /
    • 2021
  • Since epoxy resin coating shows excellent properties in formability, adhesion, and corrosion resistance, they have been extensively used in many industries. However, various types of damages in the epoxy coated tube within a relative short time have been reported due to cavitation erosion, liquid impingement, variation of temperature and pressure. Nevertheless, there has been little research on the effect of temperature on the cavitation degradation of epoxy coatings. Therefore, this work used an ultrasonic cavitation tester to focus on the effect of solution temperature on the cavitation properties of 3 kinds of epoxy coatings in 3.5% NaCl. The cavitation properties were discussed basis on the material properties and environmental aspects. As the solution temperature increased, even though with large fluctuation, the cavitation degradation rates of A and B coatings were reduced rapidly, but the rate of C coating was decreased gradually. In addition to the cushioning effect, the reason that the cavitation degradation rate reduced with solution temperature was partly related to the brittle fracture and water absorptivity of the epoxy coatings, and the water density, but was little related to the shape and composition of the compound in the coatings or the phase transition of the epoxy coating.

Indentation Tensile Properties of Seawater Piping with Cavitation and Immersion Degradation (해수배관 내부 에폭시 코팅재의 캐비테이션 및 침지 열화에 따른 압입인장특성)

  • M. J. Jung;S. H. Kim;J. M. Jeon;Y. S. Kim;Y. C. Kim
    • Corrosion Science and Technology
    • /
    • v.22 no.6
    • /
    • pp.419-428
    • /
    • 2023
  • Seawater has been used to cool devices in nuclear power plants. However, the pipes used to transport seawater are vulnerable to corrosion; hence, the inner side of pipelines is coated with an epoxy layer as prevention. Upon coating damage, the pipe becomes exposed, and corrosion progresses. The major cause is widely known as cavitation corrosion, causing the degradation of mechanical properties. In this study, corroded specimens were prepared using cavitation and immersion methods to clarify the degradation trend of mechanical properties with corrosion. Three different types of epoxy coatings were used, and accelerated cavitation procedures were composed of amplitudes of 15 ㎛, 50 ㎛, and 85 ㎛ for 2 h, 4 h, and 6 h. The immersion periods were 3 and 6 weeks. We conducted instrumented indentation tests on all degradation samples to measure mechanical properties. The results showed that higher cavitation amplitudes and longer cavitation or immersion times led to more degradation in the samples, which, in turn, decreased the yield strength. Of the three samples, the C coating had the highest resistance to cavitation and immersion degradation.

Using Volunteer Programs to Encourage the Adoption of Clean Technologies in the United States

  • Freeman, Harry M.
    • Clean Technology
    • /
    • v.3 no.2
    • /
    • pp.1-12
    • /
    • 1997
  • The paper reviews the movement in the United States to supplement environmental regulations with volunteer programs that encourage institutions and industry to go beyond compliance to achieve greater reductions in their waste and emissions than might otherwise be accomplished through the exclusive reliance on increasingly rigorous "end of the pipe" regulations. These volunteer programs have as a common element the encouragement of "pollution prevention" as a preferable strategy. Pollution prevention is a term used in the US to describe strategies, technologies, policies, etc. that focus on eliminating waste and emissions at the source rather than just treating and controlling them. In some countries the term "Clean Technologies" is used rather than pollution prevention. In the paper the author reviews selected voluntary programs and reports on accomplishments to date for those programs.

  • PDF

Value-added Chemicals Derived from Propane Using Heterogeneous Catalysts (불균일계 촉매를 통한 프로판 고부가화)

  • Yoon, Ji-Sun;Suh, Dong-Jin;Park, Tae-Jin;Cho, Young-Sang;Suh, Young-Woong
    • Clean Technology
    • /
    • v.14 no.2
    • /
    • pp.71-86
    • /
    • 2008
  • In this review we discussed the effective ways to catalytically derive value-added chemicals from propane which has been utilized only as an energy source so far. Among various propane-derived products, the most valuable chemicals such as propylene and acrylonitrile were mainly focused herein. Propylene could be manufactured through oxidative dehydrogenation of propane using $O_2,\;CO_2$, etc. as an oxidant for the purpose of overcoming thermodynamic limitations of propane dehydrogenation. On the other hand, propane ammoxidation would be an alternative to propylene ammoxidation for producing acrylonitrile since propane is much cheaper than propylene as a starting material. Although effective $MoVTeNbO_x$ catalysts have been developed fur propane ammoxidation in recent years, more detailed studies should be thoroughly performed. In carrying out both oxidative dehydrogenation and ammoxidation of propane fur a long period, the most critical issue is definitely considered to find out the most active and selective catalysts, which makes it possible to commercialize both reactions into economically viable processes.

  • PDF

Measurement of Sulfur Dioxide Concentration Using Wavelength Modulation Spectroscopy With Optical Multi-Absorption Signals at 7.6 µm Wavelength Region (7.6 µm 파장 영역의 다중 광 흡수 신호 파장 변조 분광법을 이용한 이산화황 농도 측정)

  • Song, Aran;Jeong, Nakwon;Bae, Sungwoo;Hwang, Jungho;Lee, Changyeop;Kim, Daehae
    • Clean Technology
    • /
    • v.26 no.4
    • /
    • pp.293-303
    • /
    • 2020
  • According to the World Health Organization (WHO), air pollution is a typical health hazard, resulting in about 7 million premature deaths each year. Sulfur dioxide (SO2) is one of the major air pollutants, and the combustion process with sulfur-containing fuels generates it. Measuring SO2 generation in large combustion environments in real time and optimizing reduction facilities based on measured values are necessary to reduce the compound's presence. This paper describes the concentration measurement for SO2, a particulate matter precursor, using a wavelength modulation spectroscopy (WMS) of tunable diode laser absorption spectroscopy (TDLAS). This study employed a quantum cascade laser operating at 7.6 ㎛ as a light source. It demonstrated concentration measurement possibility using 64 multi-absorption lines between 7623.7 and 7626.0 nm. The experiments were conducted in a multi-pass cell with a total path length of 28 and 76 m at 1 atm, 296 K. The SO2 concentration was tested in two types: high concentration (1000 to 5000 ppm) and low concentration (10 ppm or less). Additionally, the effect of H2O interference in the atmosphere on the measurement of SO2 was confirmed by N2 purging the laser's path. The detection limit for SO2 was 3 ppm, and results were compared with the electronic chemical sensor and nondispersive infrared (NDIR) sensor.

Study on the RPM Characteristics of Rotary Atomizer for Various Air Turbine and Nozzle Types (공기 터빈 및 노즐 설계에 따른 도장기기의 회전수 특성에 관한 연구)

  • Lee, Chan;Cha, SangWon
    • Clean Technology
    • /
    • v.9 no.4
    • /
    • pp.163-168
    • /
    • 2003
  • Basic concepts and procedures for designing air turbine and atomizing disk, which require core technologies, of rotary atomizer were established. Experimental data agreed well with the computational fluid dynamics analysis results. The rotary atomizer RPM was varied remarkably for various air turbine and atomizing disk types. Experimentally, the atomizer with $20^{\circ}$, slope-contraction and 2 nozzle air turbine has shown the most desirable performance.

  • PDF

Design Optimization of 2 Vane Pump Impeller and Volute for Performance Improvement (성능 향상을 위한 2 Vane 펌프 임펠러 및 벌류트 설계 최적화)

  • KIM, SUNG;MA, SANG-BUM;CHOI, YOUNG-SEOK;KIM, JIN-HYUK
    • Journal of Hydrogen and New Energy
    • /
    • v.31 no.4
    • /
    • pp.395-403
    • /
    • 2020
  • In this paper, the performance characteristics of the impeller and volute in the 2 vane pump were investigated using response surface method (RSM) with commercial computation fluid dynamics (CFD) code. Design variables were defined with the impeller blade angle and volute area distribution. The objective functions were defined as the total head, total efficiency and solid material size of the 2 vane pump. The design optimization of the design variables was determined using the RSM. The numerical results for the reference and optimum models were compared and discussed in this work.