• Title/Summary/Keyword: Clean Nuclear

Search Result 115, Processing Time 0.028 seconds

A Study on the Failure Mechanism of Turbine Blade using X-Ray Diffraction and FEM (X선 회절과 유한요소법을 이용한 터빈 블레이드의 파괴기구에 관한 연구)

  • Kim, Seong-Ung;Hong, Sun-Hyeok;Jeon, Hyeong-Yong;Jo, Seok-Su;Ju, Won-Sik
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.26 no.8
    • /
    • pp.1645-1652
    • /
    • 2002
  • The failure analysis on fractured parts is divided into the qualitative method by naked eyes and metallurgical microscope etc. and the quantitative method by SEM and X-ray diffraction etc. X-ray fractography can be applied to contaminated surface as well as clean surface and gain the plastic deformation and the residual stress near the fractured surface. Turbine blade is subject to cyclic bending force by steam pressure and suffers fatigue damage according to the increasing operating time. Therefore, to clean up the fracture mechanism of torsion-mounted blade in nuclear plant, the fatigue and the X-ray diffraction test was performed on the 12%Cr steel fur turbine blade and the fractured parts. The correlation of X-ray parameter and fracture mechanics parameter was determined, and then the load applied to actual broken turbine blade was predicted. Failure analysis was performed by contact stress analysis and Goodman diagram of torsion-mounted blade.

Effect of the Amplitude in Ultrasonic Nano-crystalline Surface Modification on the Corrosion Properties of Alloy 600

  • Kim, Ki Tae;Kim, Young Sik
    • Corrosion Science and Technology
    • /
    • v.18 no.5
    • /
    • pp.196-205
    • /
    • 2019
  • Surface modification techniques are known to improve SCC by adding large compressive residual stresses to metal surfaces. This surface modification technology is attracting attention because it is an economical and practical technology compared to the maintenance method of existing nuclear power plants. Surface modification techniques include laser, water jet and ultrasonic peening, pinning and ultrasonic Nano-crystal surface modification (UNSM). The focus of this study was on the effect of ultrasonic amplitude in UNSM treatment on the corrosion properties of Alloy 600. A microstructure analysis was conducted using an optical microscope (OM), scanning electron microscope (SEM) and electron backscattering diffraction (EBSD). A cyclic polarization test and AC-impedance measurement were both used to analyze the corrosion properties. UNSM treatment influences the corrosion resistance of Alloy 600 depending on its amplitude. Below the critical amplitude value, the pitting corrosion properties are improved by grain refinement and compressive residual stress, but above the critical amplitude value, crevices are formed by the formation of overlapped waves. These crevices act as corrosion initiators, reducing pitting corrosion resistance.

Effect of Heat Treatment on the Corrosion Properties of Seamless 304L Stainless Steel Pipe (이음매 없는 304L 스테인리스강관의 부식특성에 미치는 열처리의 영향)

  • Kim, K.T.;Um, S.B.;Kim, Y.S.
    • Corrosion Science and Technology
    • /
    • v.16 no.6
    • /
    • pp.305-316
    • /
    • 2017
  • Austenitic stainless steels have been widely used for various systems of nuclear power plants. Among these stainless steels, small pipes with diameter less than 14 inch have been produced in the form of seamless pipe. Annealing and cooling process during the manufacturing process can affect corrosion properties of seamless stainless steels. Therefore, 12 inch-diameter of as-received 304L stainless steel pipe was annealed and aged in this study. Intergranular corrosion resistance was evaluated by ASTM A262 Practice A, C, and E methods. The degree of sensitization was determined using a DL-EPR test. U-bend method in an autoclave was used to evaluate the SCC resistance in 0.01 M $Na_2S_4O_6$ or 40% NaOH solution at $340^{\circ}C$. As-received specimen showed relatively high degree of sensitization and intergranular corrosion rate. Carbon segregation was also observed near grain boundaries. Annealing treatment could give the dissolution of segregated carbon into the matrix. Aging treatment could induce segregation of carbon and finally form carbides. Microstructural analysis confirmed that high intergranular corrosion rate of the as-received seamless pipe was due to micro-galvanic corrosion between carbon segregation and grains.

Spherical UO2 Kernel and TRISO Coated Particle Fabrication by GSP Method and CVD Technique (겔침전과 화학증착법에 의한 구형 UO2 입자와 TRISO 피복입자 제조)

  • Jeong, Kyung-Chai;Kim, Yeon-Ku;Oh, Seung-Chul;Cho, Moon-Sung
    • Journal of the Korean Ceramic Society
    • /
    • v.47 no.6
    • /
    • pp.590-597
    • /
    • 2010
  • HTGR using a TRISO coated particles as nuclear raw fuel material can be used to produce clean hydrogen gas and process heat for a next-generation energy source. For these purposes, a TRISO coated particle was prepared with 3 pyro-carbon (buffer, IPyC, and OPyC) layers and 1 silicone carbide (SiC) layer using a CVD technique on a spherical $UO_2$ kernel surface as a fissile material. In this study, a spherical $UO_2$ particle was prepared using a modified sol-gel method with a vibrating nozzle system, and TRISO coating fabrication was carried out using a fluidized bed reactor with coating gases, such as acetylene, propylene, and methyltrichlorosilane (MTS). As the results of this study, a spherical $UO_2$ kernel with a sphericity of 1+0.06 was obtained, and the main process parameters in the $UO_2$ kernel preparation were the well-formed nature of the spherical ADU liquid droplets and the suitable temperature control in the thermal treatment of intermediate compounds in the ADU, $UO_3$, and $UO_2$ conversions. Also, the important parameters for the TRISO coating procedure were the coating temperature and feed rate of the feeding gas in the PyC layer coating, the coating temperature, and the volume fraction of the reactant and inert gases in the SiC deposition.

Development of Adsorption Desalination System Utilizing Silica-gel (실리카겔을 이용한 흡착식 담수화 시스템의 기초연구)

  • Hyun, Jun-Ho;Kim, Yeong-Min;Jung, Jin-Ho;Lee, Yoon-Joon;Chun, Won-Gee
    • 한국태양에너지학회:학술대회논문집
    • /
    • 2011.04a
    • /
    • pp.204-209
    • /
    • 2011
  • According to the environment report of UN, korea was classified as potable water shortage countries. Approximately 71% of the Earth's surface is covered by ocean. However, it is difficult to use for industry of residential purpose without a certain processing. The development of solar and waste-heat used absorption desalination technology have been examined as a viable option for supplying clean energy. In this study, the modelling of the main devices for solar and waste-heat used and adsorption desalination system was introduced. The design is divided into three parts. First, the evaporator for the vaporization of the top water is designed, and then the reactor for the adsorption and release of the steam is designed, followed by the condenser for the condensation of the fresh water is designed. In addition, new features based on the energy balance are also included to design absorption desalination system. In this basicresearch, One-bed(reactor) adsorption desalination plant that employ a low-temperature solar and waste energy was proposed and experimentally studied. The specific water yield is measured experimentally with respect to the time controlling parameters such as heat source temperatures, coolant temperatures, system switching and half-cycle operational times.

  • PDF

A Preliminary Design Concept of the HYPER System

  • Park, Won S.;Tae Y. Song;Lee, Byoung O.;Park, Chang K.
    • Nuclear Engineering and Technology
    • /
    • v.34 no.1
    • /
    • pp.42-59
    • /
    • 2002
  • In order to transmute long-lived radioactive nuclides such as transuranics(TRU), Tc-99, and I- l29 in LWR spent fuel, a preliminary conceptual design study has been performed for the accelerator driven subcritical reactor system, called HYPER(Hybrid Power Extraction Reactor) The core has a hybrid neutron energy spectrum: fast and thermal neutrons for the transmutation of TRU and fission products, respectively. TRU is loaded into the HYPER core as a TRU-Zr metal form because a metal type fuel has very good compatibility with the pyre- chemical process which retains the self-protection of transuranics at all times. On the other hand, Tc-99 and I-129 are loaded as pure technetium metal and sodium iodide, respectively. Pb-Bi is chosen as a primary coolant because Pb-Bi can be a good spallation target and produce a very hard neutron energy spectrum. As a result, the HYPER system does not have any independent spallation target system. 9Cr-2WVTa is used as a window material because an advanced ferritic/martensitic steel is known to have a good performance under a highly corrosive and radiation environment. The support ratios of the HYPER system are about 4∼5 for TRU, Tc-99, and I-129. Therefore, a radiologically clean nuclear power, i.e. zero net production of TRU, Tc-99 and I-129 can be achieved by combining 4 ∼5 LWRs with one HYPER system. In addition, the HYPER system, having good proliferation resistance and high nuclear waste transmutation capability, is believed to provide a breakthrough to the spent fuel problems the nuclear industry is faced with.

Effect of Agricultural Countermeasures on Ingestion Dose Following a Nuclear Accident

  • Keum, Dong-Kwon;Jeong, Hyojoon;Jun, In;Lim, Kwang-Muk;Choi, Yong-Ho;Lee, So-Hyeon;Jung, Tae-Jong
    • Journal of Radiation Protection and Research
    • /
    • v.44 no.1
    • /
    • pp.8-14
    • /
    • 2019
  • Background: Management of an agricultural food product system following a nuclear accident is indispensable for reducing radiation exposure due to ingestion of contaminated food. The present study analyzes the effect of agricultural countermeasures on ingestion dose following a nuclear accident. Materials and Methods: Agricultural countermeasures suitable for domestic farming environments were selected by referring to the countermeasures applied after the Fukushima accident in Japan. The avertable ingestion doses that could be obtained by implementing the selected countermeasures were calculated using the Korean Agricultural Countermeasure Analysis Program (K-ACAP) to investigate the efficiency of each countermeasure. Results and Discussion: Of the selected countermeasures, the management of crops was effective when radionuclide deposition occurred during the growing season of plants. Treatment by soil additive and topsoil removal was effective when deposition occurred during the nongrowing season of plants. The disposal of milk was not effective owing to the small contribution of milk to the overall ingestion dose. Clean feeding of livestock was effective when deposition occurred during the growing season of fodder plants such as pasture and rice-straw. Finally, the effect of food restriction increased with the soil deposition density of radionuclide. The practical effect of countermeasures was very small when the avertable ingestion dose was absolutely low. Conclusion: The agricultural countermeasures selected to reduce the radionuclide ingestion dose after a nuclear accident must be made appropriate by considering the accident situation, such as the soil deposition density of the radionuclide and the deposition date in relation to farming cycles.

Reflecting on the History and Future of Republic of Korea Navy (대한민국 해군창설 : 회고와 당부)

  • Hahm, Myung-Soo
    • Strategy21
    • /
    • s.37
    • /
    • pp.5-31
    • /
    • 2015
  • The Republic of Korean Navy (ROKN) started from scratch. However, ROKN demonstrated its Blue Navy capabilities successfully to the entire world by conducting "Operation Early Dawn" at the Aden Bay, Yemen in Jan 2011. On the event of the 70th anniversary of the ROKN, I would like to retrospect past gleaning from voyages and challenges we had in the past. At the very inception of the ROKN, Korean government as well as senior military leaders recognized that it had no time to spare to clean up military those were insinuated deeply by communist agents. It was the top priority of the government. The Mongumpo Operation which was not well known, conducted by ROKN was one of the clean-up drive. The Korean War sometimes called as "a fire from land put-off at the sea". The world famous "Incheon Landing" which reversed war situation from the Nakdong Perimeter also done by Sea Power. ROKN conducted various maritime operations including not only Incheon Landing, but amphibious operation at Hungnam, mine sweeping, sea convoy, Wonsan Withdrawal. On the same day of the Korean War started, 25th June 1950, unless the victory of the ROKNS Baekdusan (PC 701) at the Korean Strait, the waning lamp light of Korea could not be rekindled by the participation of the U.N. The ROKN rescued the 17th regiment of Korean Army from the isolation at the Ongjin Peninsular and transported gold and silver bars stored at the Bank of Korea to the Navy supply deposit in Jinhae safely. ROKN special intelligence unit conducted critical HUMINT which led Incheon Landing success. One of important mission ROKN conducted successfully was not only transporting war fighting materials but also U.S. provided grains to starving Koreans. ROKN participated Vietnam campaign from 1960s and conducted numerous maritime transportation operations supplying materials to Vietnam military forces along the long coastal lines. Experienced Naval Officers and enlisted men who discharged and acquired as merchant marine certificate supported most of the U.S. sea lift operations throughout the Vietnam campaign. ROK-US Combined Forces which had been honed and improved its war fighting capabilities through the Korean War and out of Vietnam jungle playing key deterrent against threat from north Korea. However, those threat level will be completely different when north Korea finish its nuclear weapon ambition. In order to stand firm against north Korean nuclear threat, I would like to expect strong political leadership supporting nuclear submarine for ROKN.

Development of Adsorption Desalination System Utilizing Silica-gel (실리카겔을 이용한 흡착식 담수화 시스템 개발)

  • Hyun, Jun-Ho;Israr, Farrukh;Lee, Yoon-Joon;Chun, Won-Gee
    • 한국태양에너지학회:학술대회논문집
    • /
    • 2012.03a
    • /
    • pp.364-369
    • /
    • 2012
  • The development of solar thermal energy used adsorption desalination technology have been examined as a viable option for supplying clean energy. In this study, the modelling of the main devices for solar thermal energy used and adsorption desalination system was introduced. Silica gel type adsorption desalination system is considered to be a promising low-temperature heat utilization system. The design is divided into three parts. First, the evaporator for the vaporization of the tap water is designed, and then the reactor for the adsorption and release of the steam is designed, followed by the condenser for the condensation of the fresh water is designed. In addition, new features based on the energy balance are also included to design absorption desalination system. In this basic research, One-bed(reactor) adsorption desalination plant that employ a low-temperature solar thermal energy was proposed and experimentally studied. The specific water yield is measured experimentally with respect to the time controlling parameters such as heat source temperatures, coolant temperatures, system switching and half-cycle operational times. Desalination is processes that permeate our daily lives, but It requires substantial energy input, powered either from electricity or from thermal input. From the environmental and sustainability perspecives, innovative thermodynamic cycles are needed to produce the above-mentioned useful effects at a lower specific energy input. This article describes the development of adsorption cycles for the production of desalting effects. We want that this adsorption system can be driven by low temperature heat sources at 60 to $80^{\circ}C$, such as renewable, solar thermal energy.

  • PDF

Mesoporous Silica Catalysts Modified with Sulfonic Acid and Their Catalytic Activity on Ring Opening Polymerization of Octamethylcyclotetrasiloxane (술폰산으로 표면개질된 메조기공 실리카 촉매의 제조 및 Octamethylcyclotetrasiloxane 개환중합에서의 촉매 활성)

  • Lee, Yeonsong;Hwang, Ha Soo;Lee, Jiyoung;Lo, Nu Hoang Tien;Nguyen, Tien Giang;Lee, Donghyun;Park, In
    • Applied Chemistry for Engineering
    • /
    • v.31 no.4
    • /
    • pp.383-389
    • /
    • 2020
  • Mesoporous silica solid catalysts modified with sulfonic acid were prepared for cationic ring-opening polymerization of octamethylcyclotetrasiloxane (D4). Two sets of MCM-41 (1.7 and 2.8 nm) and SBA-15 (8.1 and 15.9 nm) with different pore sizes were used as catalyst supports. The surface of silica materials was modified with (3-mercaptopropyl)trimethoxysilane by silylation reaction and oxidized to sulfonic acid. The structures of the prepared catalysts were examined by X-ray diffraction and nitrogen adsorption-desorption. The pore size, specific surface area, and pore volume of the modified solid catalysts decreased slightly. In addition, the modification of the sulfonic acid on the silica surface was confirmed by using infrared spectroscopy and nuclear magnetic resonance spectroscopy. To observe the effect of the particle size on the catalytic activity, it was observed with a scanning electron microscope. The catalysts were used to synthesize PDMS through a ring-opening polymerization of D4, and the conversion and polymerization rate of the polymerization reaction depended on the pore size, specific surface area, particle size, and particle agglomeration of the catalysts. In order for the polymerization rate, the catalyst prepared with SBA-15 of 8.1 nm pore size had the fastest reaction rate and showed the best catalytic activity.