• Title/Summary/Keyword: Classification of flammable materials

Search Result 14, Processing Time 0.023 seconds

The Review of Globally Harmonized System of Classification and Labelling of Chemicals (위험물질 분류 및 표지에 관한 세계조화시스템 고찰)

  • Kwon, Kyung-Ok
    • Fire Science and Engineering
    • /
    • v.21 no.3
    • /
    • pp.84-90
    • /
    • 2007
  • The UN recommends to the member of OECD to implement the GHS (Globally Harmonized System of Classification and Labelling of Chemicals) that harmonized the flammable materials for classification, labelling, production, transport, storage, handling, usage and discard. There are no significant differences between UN and GHS because GHS is based on physico-chemical hazard and acute toxity of classification and labelling of UN regulation for the classification and transportation of flammable materials. In this paper it was analyzed that the classification, labelling and test method of flammable materials for GHS and the national law of safety management of flammable materials.

A Study on Explosive Limits of Flammable Materials - Explosive Limits of Flammable Binary liquid Mixture by Liquid Phase Compositions - (가연성물질의 폭발한계에 관한 연구 - 액상 조성에 의한 가연성 2성분 액체혼합물의 폭발한계 -)

  • 하동명
    • Journal of the Korean Society of Safety
    • /
    • v.16 no.4
    • /
    • pp.103-108
    • /
    • 2001
  • Explosive limit is one of the major physical properties used to determine the fire and explosion hazards of the flammable substances. Explosive limits are used to classify flammable liquids according to their relative flammability. Such a classification is important for the safe handling of flammable liquids which constitute the solvent mixtures. Explosive limits of all compounds and solvent mixtures can be calculated with the appropriate use of the fundamental laws of Raoult, Dalton, Le Chatelier and activity coefficient models. In this paper, Raoult,s law and van Laar equation(activity coefficient model) are shown to be applicable for the prediction of the explosive limits in the flammable ethylacetate-toluene system. The values calculated by the proposed equations were a good agreement with literature data within a given percent. From a given results, by the use of the proposed equations, it is possible to predict explosive limits of the other flammable mixtures. It is hoped eventually that this method will permit the estimation of the explosive Properties of flammable mixtures with improved accuracy and the broader application for other flammable stances.

  • PDF

Prediction of Explosion Limit of Flammable Mixture by Using the Heat of Combustion (연소열을 이용한 가연성 혼합물의 폭발한계 예측)

  • Ha Dong-Myeong
    • Journal of the Korean Institute of Gas
    • /
    • v.10 no.1 s.30
    • /
    • pp.19-25
    • /
    • 2006
  • Explosion limit is one of the major physical properties used to determine the fire and explosion hazards of the flammable substances. Explosion limits are used to classify flammable materials according to their relative flammability. Such a classification is important for the safe handling, storage, transportation of flammable substances. In this study, the lower explosion limits(LEL) of the flammable mixtures predicted with the appropriate use of the vapor composition and the heat of combustion of the individual components which constitute mixture. The values calculated by the proposed equations were a good agreement with literature data within a few percent. From a given results, It is to be hoped that this methodology will contribute to the estimation of the explosive properties of flammable mixtures with improved accuracy and the broader application for other flammable substances.

  • PDF

The study on the regulation of classification of flammable materials for the rail transportation in domestic and abroad (철도위험물수송을 위한 국내외 위험물분류 기준 연구)

  • Kwon, Kyung-Ok
    • Proceedings of the Korea Institute of Fire Science and Engineering Conference
    • /
    • 2008.11a
    • /
    • pp.524-535
    • /
    • 2008
  • 위험물들은 위험물의 사용 및 관리뿐만 아니라 수송시에도 많은 위험성을 내포하고 있어 각국에서는 적당한 기준을 마련하여 특별히 관리하고 있다. 우리나라 철도 위험물안전수송에 관한 철도안전법 개정을 위하여 국내 철도 위험물의 수송량과 종류를 분석하고 국내외 위험물분류기준을 비교하였다. 우리나라는 지리적으로 대륙을 연결하기 편리한 위치에 있어 향후 국경을 넘어 대륙을 횡단하는 국제법을 채택하는 것이 유리하고, 수송되어야 할 물질의 종류가 다양해질 것을 대비하여 국제적으로 통용될 수 있는 위험물일람표를 채택하는 것을 제안하였다.

  • PDF

The Effect of the Change of Wind Velocity on the Classification of Explosion Hazardous Area (폭발위험장소 선정 시 풍속 변화에 관한 연구)

  • Kwon, Yong-Joong;Kim, Dong-Joon
    • Korean Journal of Hazardous Materials
    • /
    • v.6 no.2
    • /
    • pp.62-67
    • /
    • 2018
  • It is very important to classify explosion hazardous area in order to prevent an accident explosion. In order to prevent such a explosion, the Industrial Safety and Health Standards Rules stipulates the establishment and management of explosion hazards in accordance with the criteria set by the Korean Industrial Standards. This study has investigated the range of the explosion hazardous area according to various hole sizes, pressures, vapor densities, and wind velocities in the outdoor flammable liquid tank using KS C IEC-60079-10-1 $2^{nd}$ Ed.(=IEC CODE) and PHAST. The results show that the explosion hazardous areas by IEC CODE have circle shapes. However, the areas by PHAST show ellipse shapes. The different of the explosion hazardous areas increases with the increase of wind velocity.

A Study on Determination of Range of Hazardous Area Caused by the Secondary Grade of Release of Vapor Substances Considering Material Characteristic and Operating Condition (물질특성 및 운전조건을 고려한 증기상 물질의 2차 누출에 따른 폭발위험장소 범위 선정에 관한 연구)

  • Seo, Minsu;Kim, Kisug;Hwang, Yongwoo;Chon, Youngwoo
    • Journal of the Korean Institute of Gas
    • /
    • v.22 no.4
    • /
    • pp.13-26
    • /
    • 2018
  • Currently, local regulations, such as KS Code, do not clearly specify how to calculate the range of hazardous area, so the dispersion modeling program should be used to select dispersion. The purpose of this study is to present a methodology of determining the range of hazardous area which is simpler and more reasonable than modelling by using representative materials and process conditions. Based on domestic and overseas regulations that are currently in effect, variables affecting distance to LFL(Lower Flammable Limit) were selected. A total of 16 flammable substances were modelled for substance variables, process conditions variables, and weather conditions variables, and the statistical analysis selected the variables that affect them. Using the selected variables, a three-step classification method was prepared to select the range of locations subject to explosion hazard.

A Study on the Assessment of Hazardous Properties of the Chemicals (화학물질의 위험성평가에 관한 연구)

  • Lee, Bong-Woo;Park, Chul-Woo;Song, Haak;Choi, Jeong-Soo
    • Proceedings of the Korea Institute of Fire Science and Engineering Conference
    • /
    • 2008.11a
    • /
    • pp.262-269
    • /
    • 2008
  • Chemical products have had an favorable influence on our everyday life, and contributed very much to the development of human culture. According to the rapid change of industry and the development of scientific technique the using chemical products are increasing more and more. Chemical products can have any hazardous property such as flammability or explosiveness. There are occurring many accidents in the international trade due to the different classification and labelling of chemicals produced in various countries. The main purpose of this work is the development of global standard test methods for the chemicals, and the classification and labelling in building block approach by means of the basic technical data. Oxidizing solids, combustible solids, spontaneously combustible materials, water-prohibitive materials, flammable liquids, self-reactive materials and oxidizing liquids have been tested. The results have been classified according to the hazard material safety regulation and the UN regulation, and summarized in a data-base.

  • PDF

Spectral Analysis Method for Classification of Liquid Characteristics (액체의 특성 분류를 위한 스펙트럼 분석 방법)

  • Lee, Jonggil
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.20 no.12
    • /
    • pp.2206-2212
    • /
    • 2016
  • It is necessary to find characteristic phenomena related with permittivity differences for classification of liquid characteristics. If these phenomena can be remotely detected and characteristics can be extracted, it will be very useful in finding flammable liquid materials and classifying substances of these liquids. Therefore, in this paper, reflection and transmitted signals were analyzed from three receiving antennas with one transmitting antenna using wideband electromagnetic wave signals. Frequency response characteristics of reflected or transmitted signals are different according to characteristics of liquid materials. However, conventional FFT methods cannot be applied due to problems of low resolution caused by data windowing distortion. To minimize these problems, eigenvector analysis method was applied for high resolution spectrum estimation of received signals. From these results, it can be shown that classification of many kinds of liquids are possible using peak frequencies and corresponding peak power values of spectrum estimates obtained from various liquid materials.

A Study on the Assessment of Hazardous Properties of the Oxidizing Solids (산화성고체의 위험성평가에 관한 연구)

  • Lee, Bong-Woo;Park, Chul-Woo;Song, Haak
    • Fire Science and Engineering
    • /
    • v.23 no.5
    • /
    • pp.9-16
    • /
    • 2009
  • Chemical products have had an favorable influence on our everyday life, and contributed very much to the development of human culture. According to the rapid change of industry and the development of scientific technique the using chemical products are increasing more and more. Chemical products can have any hazardous property such as flammability or explosiveness. There are occurring many accidents in the international trade due to the different classification and labelling of chemicals produced in various countries. The main purpose of this work is the development of global standard test methods for the chemicals, and the classification and labelling in building block approach by means of the basic technical data. Oxidizing solids, combustible solids, spontaneously combustible materials, water-prohibitive materials, flammable liquids, self-reactive materials and oxidizing liquids have been classification The first Experiment have tested Oxidizing solids of third five. The results have been classified according to the hazard material safety regulation and the UN regulation, and summarized in a data-base.

A Study on Explosion Risk Management for Hot Oil Heater (열매체 가열기 설비에서의 폭발위험관리에 관한 연구)

  • Jang, Chul;Kwon, Jin-Wook;Hwang, Myoung-Hwan
    • Journal of the Korea Safety Management & Science
    • /
    • v.19 no.3
    • /
    • pp.1-9
    • /
    • 2017
  • In the industrial field, various type of fuel have been used for product processing facilities. Recent for 10 years, the usage of natural gas (NG) was gradually increased. Because it has many merits; clean fuel, no transportation, storage facility and so on. There are common safety concept that strict explosion protection approaches are needed for facilities where explosive materials such as flammable liquid, vapor and gases exist. But some has an optimistic point of view that the lighter than air gases such as NG disperse rapidly, hence do not form explosion environment upon release into the atmosphere, many parts has a conventional safety point of view that those gases are also inflammable gases, hence can form explosion environment although the extent is limited and present. In this paper, the heating equipments (Hot Oil Heater) was reviewed and some risk management measures were proposed. These measures include hazardous area classification and explosion-proof provisions of electric apparatus, an early gas leak detection and isolation, ventilation system reliability, emergency response plan and training and so on. This study calculates Hazardous Area Classification using the hypothetical volume in the KS C IEC code.