DOI QR코드

DOI QR Code

Spectral Analysis Method for Classification of Liquid Characteristics

액체의 특성 분류를 위한 스펙트럼 분석 방법

  • Lee, Jonggil (Department of Information and Telecommunication Engineering, Incheon National University)
  • Received : 2016.07.12
  • Accepted : 2016.12.07
  • Published : 2016.12.31

Abstract

It is necessary to find characteristic phenomena related with permittivity differences for classification of liquid characteristics. If these phenomena can be remotely detected and characteristics can be extracted, it will be very useful in finding flammable liquid materials and classifying substances of these liquids. Therefore, in this paper, reflection and transmitted signals were analyzed from three receiving antennas with one transmitting antenna using wideband electromagnetic wave signals. Frequency response characteristics of reflected or transmitted signals are different according to characteristics of liquid materials. However, conventional FFT methods cannot be applied due to problems of low resolution caused by data windowing distortion. To minimize these problems, eigenvector analysis method was applied for high resolution spectrum estimation of received signals. From these results, it can be shown that classification of many kinds of liquids are possible using peak frequencies and corresponding peak power values of spectrum estimates obtained from various liquid materials.

액체의 특성을 분류하기 위해서는 액상 물질의 유전율의 차이 등에 따른 특징적인 현상들을 파악하여야 한다. 이러한 현상들을 원격으로 탐지하여 추출할 수 있다면 폭발 가능성이 있는 위험물질의 검색이나 액체의 종류 등을 파악하는데 유용하게 활용할 수 있을 것이다. 따라서 본 논문에서는 광대역 전자파 신호를 이용하여 액체의 반사 및 투과신호를 하나의 송신 안테나와 2개의 수신 안테나에서 획득하여 분석하였다. 반사 또는 투과신호는 액체의 종류에 따라 주파수별 응답특성이 다르게 나타난다. 그러나 기존의 FFT 스펙트럼 추정방식은 주파수 해상도 문제 및 윈도잉에 의한 왜곡 때문에 적용하기 어렵다. 따라서 이러한 문제들을 최소화할 수 있는 고유벡터 해석 기법을 이용한 고해상도 스펙트럼 추정 및 분석 방법을 적용하였다. 이렇게 얻어진 결과들로부터 투과 또는 반사경로 들에 따른 액체의 종류별 첨두치 주파수들 및 대응전력 값들을 비교함으로서 다양한 액체들의 분류가 가능함을 보였다.

Keywords

References

  1. J. Munoz et al., "Automatic measurement of permittivity and permeability at microwave frequencies using normal and oblique free-wave incidence with focused beam," IEEE Trans. Instrumentation and Measurement, vol. 47, no. 4, pp. 886-892, Aug. 1998. https://doi.org/10.1109/19.744638
  2. S. N. Kharkovsky et al., "Measurement and monitoring of microwave reflection and transmission properties of cement-based specimens," IEEE Trans. Instrumentation and Measurement, vol. 51, no. 6, pp. 1210-1218, Dec. 2002. https://doi.org/10.1109/TIM.2002.808081
  3. U. C. Hasar, C. R. Westgate and M. Ertugrul, "Permittivity determination of liquid materials using waveguide measurements for industrial applications," IET Microwaves, Antennas and Propagation, vol. 4, no. 1, pp. 141-152, Jan. 2010. https://doi.org/10.1049/iet-map.2008.0197
  4. Z. Ma and S. Okamura, "Permittivity determination using amplitudes of transmission and reflection coefficients at microwave frequency," IEEE Trans. Microwave Theory and Techniques, vol. 47, no. 5, pp. 546-550, May 1999. https://doi.org/10.1109/22.763153
  5. U. C. Hasar, "A fast and accurate amplitude-only transmission-reflection method for complex permittivity determination of lossy materials," IEEE Trans. Microwave Theory and Techniques, vol. 56, no. 9, pp. 2129-2135, Sept. 2008. https://doi.org/10.1109/TMTT.2008.2002229
  6. B. Allen et al., Ultra-Wideband antennas and propagation for communications, radar and imaging, West Sussex, England: John Wiley & Sons, Ltd., 2007.
  7. D. H. Johnson and S. R. DeGraff, "Improving the resolution of bearing in passive sonar arrays by eigenvalue analysis," IEEE Trans. Acoust. Speech Signal Process., vol. 30, no. 4, pp. 638-647, Aug. 1982. https://doi.org/10.1109/TASSP.1982.1163915
  8. R. O. Schmidt, "Multiple emitter location and signal parameter estimation," IEEE Trans. Antennas. Propag., vol. 34, no. 3, pp. 276-280, Mar. 1986. https://doi.org/10.1109/TAP.1986.1143830