• Title/Summary/Keyword: Classification accuracy assessment

Search Result 168, Processing Time 0.022 seconds

The Accuracy Assessment of Species Classification according to Spatial Resolution of Satellite Image Dataset Based on Deep Learning Model (딥러닝 모델 기반 위성영상 데이터세트 공간 해상도에 따른 수종분류 정확도 평가)

  • Park, Jeongmook;Sim, Woodam;Kim, Kyoungmin;Lim, Joongbin;Lee, Jung-Soo
    • Korean Journal of Remote Sensing
    • /
    • v.38 no.6_1
    • /
    • pp.1407-1422
    • /
    • 2022
  • This study was conducted to classify tree species and assess the classification accuracy, using SE-Inception, a classification-based deep learning model. The input images of the dataset used Worldview-3 and GeoEye-1 images, and the size of the input images was divided into 10 × 10 m, 30 × 30 m, and 50 × 50 m to compare and evaluate the accuracy of classification of tree species. The label data was divided into five tree species (Pinus densiflora, Pinus koraiensis, Larix kaempferi, Abies holophylla Maxim. and Quercus) by visually interpreting the divided image, and then labeling was performed manually. The dataset constructed a total of 2,429 images, of which about 85% was used as learning data and about 15% as verification data. As a result of classification using the deep learning model, the overall accuracy of up to 78% was achieved when using the Worldview-3 image, the accuracy of up to 84% when using the GeoEye-1 image, and the classification accuracy was high performance. In particular, Quercus showed high accuracy of more than 85% in F1 regardless of the input image size, but trees with similar spectral characteristics such as Pinus densiflora and Pinus koraiensis had many errors. Therefore, there may be limitations in extracting feature amount only with spectral information of satellite images, and classification accuracy may be improved by using images containing various pattern information such as vegetation index and Gray-Level Co-occurrence Matrix (GLCM).

Land Cover Classification of High-Spatial Resolution Imagery using Fixed-Wing UAV (고정익 UAV를 이용한 고해상도 영상의 토지피복분류)

  • Yang, Sung-Ryong;Lee, Hak-Sool
    • Journal of the Society of Disaster Information
    • /
    • v.14 no.4
    • /
    • pp.501-509
    • /
    • 2018
  • Purpose: UAV-based photo measurements are being researched using UAVs in the space information field as they are not only cost-effective compared to conventional aerial imaging but also easy to obtain high-resolution data on desired time and location. In this study, the UAV-based high-resolution images were used to perform the land cover classification. Method: RGB cameras were used to obtain high-resolution images, and in addition, multi-distribution cameras were used to photograph the same regions in order to accurately classify the feeding areas. Finally, Land cover classification was carried out for a total of seven classes using created ortho image by RGB and multispectral camera, DSM(Digital Surface Model), NDVI(Normalized Difference Vegetation Index), GLCM(Gray-Level Co-occurrence Matrix) using RF (Random Forest), a representative supervisory classification system. Results: To assess the accuracy of the classification, an accuracy assessment based on the error matrix was conducted, and the accuracy assessment results were verified that the proposed method could effectively classify classes in the region by comparing with the supervisory results using RGB images only. Conclusion: In case of adding orthoimage, multispectral image, NDVI and GLCM proposed in this study, accuracy was higher than that of conventional orthoimage. Future research will attempt to improve classification accuracy through the development of additional input data.

Support Vector Machine Classification Using Training Sets of Small Mixed Pixels: An Appropriateness Assessment of IKONOS Imagery

  • Yu, Byeong-Hyeok;Chi, Kwang-Hoon
    • Korean Journal of Remote Sensing
    • /
    • v.24 no.5
    • /
    • pp.507-515
    • /
    • 2008
  • Many studies have generally used a large number of pure pixels as an approach to training set design. The training set are used, however, varies between classifiers. In the recent research, it was reported that small mixed pixels between classes are actually more useful than larger pure pixels of each class in Support Vector Machine (SVM) classification. We evaluated a usability of small mixed pixels as a training set for the classification of high-resolution satellite imagery. We presented an advanced approach to obtain a mixed pixel readily, and evaluated the appropriateness with the land cover classification from IKONOS satellite imagery. The results showed that the accuracy of the classification based on small mixed pixels is nearly identical to the accuracy of the classification based on large pure pixels. However, it also showed a limitation that small mixed pixels used may provide insufficient information to separate the classes. Small mixed pixels of the class border region provide cost-effective training sets, but its use with other pixels must be considered in use of high-resolution satellite imagery or relatively complex land cover situations.

THE USE OF CLASSIFICATION IN PRIMARY AND SECONDARY CLEFT LIP AND NOSE DEFORMITIES IN MEDICAL RECORDS (구순구개열 환자의 의무기록시 분류법의 도입)

  • ChoiI, Jin-Young
    • Maxillofacial Plastic and Reconstructive Surgery
    • /
    • v.21 no.2
    • /
    • pp.198-204
    • /
    • 1999
  • The treatment of cleft lip and palate patients requires multidisciplinary coorperation, and the involved clinicians rely on the completeness and accuracy of the patient's medical records in developing comprehensive treatment plans. There are so many classifications in cleft lip and palate but each classification has advantages and disadvantages. Furthermore there are few classification or assessment in secondary cleft lip and palate deformities. A modification of Kenahan's Y classification in primary cleft lip and palate and new classification in secondary cleft lip and palate deformities are proposed as a simple and reproducible method. These reproducible classification may be used to facilitate not only storing and analyzing of medical informations in computer but also the planning of secondary repairs

  • PDF

The Development and Application of Biotop Value Assessment Tool(B-VAT) (비오톱의 보전가치 평가도구(B-VAT) 개발과 적용)

  • Cho, Hyun-Ju;Ra, Jung-Hwa;Kim, Jin-Hyo;Kwon, Oh-Sung
    • Journal of the Korean Society of Environmental Restoration Technology
    • /
    • v.16 no.1
    • /
    • pp.131-145
    • /
    • 2013
  • The purposes of this research are : to analyze biotop type and carry out conservation value assessment in study areas, Daegu Science Park national industrial complex; to supply basic data for the landscape ecological planning; and to improve the application of assessment model with the development of Biotop Value Assessment Tool (B-VAT). The result is as follows. First of all, the field survey showed 434 species of flora and 220 species of insecta. According to the result of biotop type analysis in the biotop classification system with field survey, 13 biotope groups and 63 biotope types were classified. In the map of biotop type classification, readjusted farmland biotop(FA) was prevalent and forest biotop(E) was shown to the southeast side of the site. Next, according to the first assessment with B-VAT, total 19 biotop types including natural river(BA) with abundant plants had I grade and total 16 biotop types such as vegetable garden adjacent to river(BC) had V grade. In terms of the second assessment, we analyzed total 30 areas, total 82 areas, respectively, which had special meaning for the conservation of species and biotop(1a, 1b) and which had meaning for the conservation of species and biotop(2a, 2b, 2c). This research will be a basic data, which can solve the damage problem systematically and control it landscape-friendly with biotop classification and assessment which we developed. In particular, we expect that biotop value assessment tool(B-VAT) with GIS will be a great contribution to popularity compared with the value model by complicated algorism such as adding-matrix, weight and equal distribution. In addition, this will save the time and improve the accuracy for hand-counting.

Improvement of Forest Boundary in Landcover Classification Map(Level-II) for Functional Assessment of Ecosystem Services (생태계 서비스 기능평가를 위한 중분류 토지피복지도 산림지역 경계설정 개선 방안)

  • Jeon, Seongwoo;Kim, Jaeuk;Kim, Yuhoon;Jung, Huicheul;Lee, Woo-Kyun;Kim, Joon-Soon
    • Journal of the Korean Society of Environmental Restoration Technology
    • /
    • v.18 no.1
    • /
    • pp.127-133
    • /
    • 2015
  • Interests in ecosystem services have increased and a number of attempts to perform a quantitative valuation on them have been undertaken. To classify the ecosystem types landcover classification maps are generally used. However, some forest types on landcover classification maps have a number of errors. The purpose of this study is to verify the forest types on the landcover map by using a variety of field survey data and to suggest an improved method for forest type classifications. Forest types are compared by overlaying the landcover classification map with the 4th forest type map, and then they are verified by using National Forest Inventory, 3rd National Ecosystem Survey and field survey data. Misclassifications of forest types are found on the forest on the forest type map and farm and other grassland on the landcover map. Some errors of forest types occur at Daegu, Busan and Ulsan metropolitan cities and Gangwon province. The results of accuracy in comprehensive classification show that deciduous forest is 76.1%; coniferous forest is 54.0%; and mixed forest is 22.2%. In order to increase the classification accuracy of forest types a number of remote sensing images during various time periods should be used and the survey period of NFI and the National Forest Inventory and National Ecosystem Survey should be consistent. Also, examining areas with wide forest patch should be prioritized during the field survey in order to decrease any errors.

Study of Comparison of Classification Accuracy of Airborne Hyperspectral Image Land Cover Classification though Resolution Change (해상도변화에 따른 항공초분광영상 토지피복분류의 분류정확도 비교 연구)

  • Cho, Hyung Gab;Kim, Dong Wook;Shin, Jung Il
    • Journal of Korean Society for Geospatial Information Science
    • /
    • v.22 no.3
    • /
    • pp.155-160
    • /
    • 2014
  • This paper deals with comparison of classification accuracy between three land cover classification results having difference in resolution and they were classified with eight classes including building, road, forest, etc. Airborne hyperspectral image used in this study was acquired at 1000m, 2000m, 3000m elevation and had 24 bands(0.5m spatial resolution), 48 bands(1.0m), 96 bands(1.5m). Assessment of classification accuracy showed that the classification using 48 bands hyperspectral image had outstanding result as compared with other images. For using hyperspectral image, it was verified that 1m spatial resolution image having 48 bands was appropriate to classify land cover and qualitative improvement is expected in thematic map creation using airborne hyperspectral image.

Accuracy of Phishing Websites Detection Algorithms by Using Three Ranking Techniques

  • Mohammed, Badiea Abdulkarem;Al-Mekhlafi, Zeyad Ghaleb
    • International Journal of Computer Science & Network Security
    • /
    • v.22 no.2
    • /
    • pp.272-282
    • /
    • 2022
  • Between 2014 and 2019, the US lost more than 2.1 billion USD to phishing attacks, according to the FBI's Internet Crime Complaint Center, and COVID-19 scam complaints totaled more than 1,200. Phishing attacks reflect these awful effects. Phishing websites (PWs) detection appear in the literature. Previous methods included maintaining a centralized blacklist that is manually updated, but newly created pseudonyms cannot be detected. Several recent studies utilized supervised machine learning (SML) algorithms and schemes to manipulate the PWs detection problem. URL extraction-based algorithms and schemes. These studies demonstrate that some classification algorithms are more effective on different data sets. However, for the phishing site detection problem, no widely known classifier has been developed. This study is aimed at identifying the features and schemes of SML that work best in the face of PWs across all publicly available phishing data sets. The Scikit Learn library has eight widely used classification algorithms configured for assessment on the public phishing datasets. Eight was tested. Later, classification algorithms were used to measure accuracy on three different datasets for statistically significant differences, along with the Welch t-test. Assemblies and neural networks outclass classical algorithms in this study. On three publicly accessible phishing datasets, eight traditional SML algorithms were evaluated, and the results were calculated in terms of classification accuracy and classifier ranking as shown in tables 4 and 8. Eventually, on severely unbalanced datasets, classifiers that obtained higher than 99.0 percent classification accuracy. Finally, the results show that this could also be adapted and outperforms conventional techniques with good precision.

A study on the Effective Use of Environmental Information System - focused on the accuracy of raw data - (환경정보체계의 효과적 이용에 관한 고찰 - 원자료의 정확성을 중심으로 -)

  • Lee, Kyoo-Seock
    • Journal of Environmental Impact Assessment
    • /
    • v.7 no.2
    • /
    • pp.27-35
    • /
    • 1998
  • In Korea, the initial installation of GIS requires lots of cost, time, and human efforts. If the accuracy of GIS data does not meet the certain standard for use, the system may not work as expected. So, it needs to be investigated for the accuracy of raw data. However, there is little study for the accuracy of raw data in Korea. Therefore, the purpose of this study is to review the data accuracy of raw data - geologic map, 1:5,000 and 1:25,000 scale topographic map, forest stand map, degree of green naturality(DGN) map, and detailed survey data of DGN map-, which are to be used in Environmental Information System(EIS) in Korea. After this study, some errors in data were surveyed and following conclusions were derived. (1) There is no map data, e. g, wildlife habitat map. (2) Some data are misinterpreted depending on the location in the geologic map. (3) Some data are not updated properly after change of topography in the topographic map or the elevation and location is different depending on the scale.. (4) Some data are not edited properly in the forest stand map, e. g. two attributes in one polygon. (5) DGN classification system does not reflect the characteristic of Korean vegetation community. So, it needs to be refined and restructured.

  • PDF

A Comparison of Pixel- and Segment-based Classification for Tree Species Classification using QuickBird Imagery (QuickBird 위성영상을 이용한 수종분류에서 픽셀과 분할기반 분류방법의 정확도 비교)

  • Chung, Sang Young;Yim, Jong Su;Shin, Man Yong
    • Journal of Korean Society of Forest Science
    • /
    • v.100 no.4
    • /
    • pp.540-547
    • /
    • 2011
  • This study was conducted to compare classification accuracy by tree species using QuickBird imagery for pixel- and segment-based classifications that have been mostly applied to classify land covers. A total of 398 points was used as training and reference data. Based on this points, the points were classified into fourteen land cover classes: four coniferous and seven deciduous tree species in forest classes, and three non-forested classes. In pixel-based classification, three images obtained by using raw spectral values, three tasseled indices, and three components from principal component analysis were produced. For the both classification processes, the maximum likelihood method was applied. In the pixel-based classification, it was resulted that the classification accuracy with raw spectral values was better than those by the other band combinations. As resulted that, the segment-based classification with a scale factor of 50% provided the most accurate classification (overall accuracy:76% and ${\hat{k}}$ value:0.74) compared to the other scale factors and pixel-based classification.