• Title/Summary/Keyword: Classification Performance

Search Result 3,802, Processing Time 0.031 seconds

Differences of Cold-heat Patterns between Healthy and Disease Group (건강군과 질환군의 한열지표 차이에 관한 고찰)

  • Kim Ji-Eun;Lee Seung-Gi;Ryu Hwa-Seung;Park Kyung-Mo
    • Journal of Physiology & Pathology in Korean Medicine
    • /
    • v.20 no.1
    • /
    • pp.224-228
    • /
    • 2006
  • The pattern identification of exterior-interior syndrome and cold-heat syndrome is one of the diagnostic methods using most frequently in Oriental medicine. There was no systematic studies analyzing the characteristics of the 'exterior-interior and cold-heat' between healthy and disease group. In this study, cold-heat pattern, blood pressure, pulse rate, height and weight are recorded from 100 healthy subjects and 196 disease subjects with age ranging from 30 to 59 years. To analyze the differences between healthy and disease group, we used the descriptive statistics. And linear regression function, linear support vector machine and bayesian classifier were used for distinguishing healthy group from disease group. The score of both exterior-heat and interior-cold in healthy group is higher than the score in disease group. This means that if one belongs to the disease group, his(or her) exterior gets cold and his interior gets hot. And also, these result have no relevance to age. But, the attempt to classify healthy group from disease group with a exterior-interior and cold-heat and other vital signs did not have good performance. It mean that even though they have a different trend each other, only these kinds of information couldn't classify healthy group and disease group.

Design and Performance Analysis of ML Techniques for Finger Motion Recognition (손가락 움직임 인식을 위한 웨어러블 디바이스 설계 및 ML 기법별 성능 분석)

  • Jung, Woosoon;Lee, Hyung Gyu
    • Journal of Korea Society of Industrial Information Systems
    • /
    • v.25 no.2
    • /
    • pp.129-136
    • /
    • 2020
  • Recognizing finger movements have been used as a intuitive way of human-computer interaction. In this study, we implement an wearable device for finger motion recognition and evaluate the accuracy of several ML (Machine learning) techniques. Not only HMM (Hidden markov model) and DTW (Dynamic time warping) techniques that have been traditionally used as time series data analysis, but also NN (Neural network) technique are applied to compare and analyze the accuracy of each technique. In order to minimize the computational requirement, we also apply the pre-processing to each ML techniques. Our extensive evaluations demonstrate that the NN-based gesture recognition system achieves 99.1% recognition accuracy while the HMM and DTW achieve 96.6% and 95.9% recognition accuracy, respectively.

Content-based Image Retrieval using Feature Extraction in Wavelet Transform Domain (웨이브릿 변환 영역에서 특징추출을 이용한 내용기반 영상 검색)

  • 최인호;이상훈
    • Journal of Korea Multimedia Society
    • /
    • v.5 no.4
    • /
    • pp.415-425
    • /
    • 2002
  • In this paper, we present a content-based image retrieval method which is based on the feature extraction in the wavelet transform domain. In order to overcome the drawbacks of the feature vector making up methods which use the global wavelet coefficients in subbands, we utilize the energy value of wavelet coefficients, and the shape-based retrieval of objects is processed by moment which is invariant in translation, scaling, rotation of the objects The proposed methods reduce feature vector size, and make progress performance of classification retrieval which provides fast retrievals times. To offer the abilities of region-based image retrieval, we discussed the image segmentation method which can reduce the effect of an irregular light sources. The image segmentation method uses a region-merging, and candidate regions which are merged were selected by the energy values of high frequency bands in discrete wavelet transform. The region-based image retrieval is executed by using the segmented region information, and the images are retrieved by a color, texture, shape feature vector.

  • PDF

A Web Contents Ranking System using Related Tag & Similar User Weight (연관 태그 및 유사 사용자 가중치를 이용한 웹 콘텐츠 랭킹 시스템)

  • Park, Su-Jin;Lee, Si-Hwa;Hwang, Dae-Hoon
    • Journal of Korea Multimedia Society
    • /
    • v.14 no.4
    • /
    • pp.567-576
    • /
    • 2011
  • In current Web 2.0 environment, one of the most core technology is social bookmarking which users put tags and bookmarks to their interesting Web pages. The main purpose of social bookmarking is an effective information service by use of retrieval, grouping and share based on user's bookmark information and tagging result of their interesting Web pages. But, current social bookmarking system uses the number of bookmarks and tag information separately in information retrieval, where the number of bookmarks stand for user's degree of interest on Web contents, information retrieval, and classification serve the purpose of tag information. Because of above reason, social bookmarking system does not utilize effectively the bookmark information and tagging result. This paper proposes a Web contents ranking algorithm combining bookmarks and tag information, based on preceding research on associative tag extraction by tag clustering. Moreover, we conduct a performance evaluation comparing with existing retrieval methodology for efficiency analysis of our proposed algorithm. As the result, social bookmarking system utilizing bookmark with tag, key point of our research, deduces a effective retrieval results compare with existing systems.

Content-based Image Retrieval Using Texture Features Extracted from Local Energy and Local Correlation of Gabor Transformed Images

  • Bu, Hee-Hyung;Kim, Nam-Chul;Lee, Bae-Ho;Kim, Sung-Ho
    • Journal of Information Processing Systems
    • /
    • v.13 no.5
    • /
    • pp.1372-1381
    • /
    • 2017
  • In this paper, a texture feature extraction method using local energy and local correlation of Gabor transformed images is proposed and applied to an image retrieval system. The Gabor wavelet is known to be similar to the response of the human visual system. The outputs of the Gabor transformation are robust to variants of object size and illumination. Due to such advantages, it has been actively studied in various fields such as image retrieval, classification, analysis, etc. In this paper, in order to fully exploit the superior aspects of Gabor wavelet, local energy and local correlation features are extracted from Gabor transformed images and then applied to an image retrieval system. Some experiments are conducted to compare the performance of the proposed method with those of the conventional Gabor method and the popular rotation-invariant uniform local binary pattern (RULBP) method in terms of precision vs recall. The Mahalanobis distance is used to measure the similarity between a query image and a database (DB) image. Experimental results for Corel DB and VisTex DB show that the proposed method is superior to the conventional Gabor method. The proposed method also yields precision and recall 6.58% and 3.66% higher on average in Corel DB, respectively, and 4.87% and 3.37% higher on average in VisTex DB, respectively, than the popular RULBP method.

Study on Signal Processing Method for Extracting Hand-Gesture Signals Using Sensors Measuring Surrounding Electric Field Disturbance (주변 전기장 측정센서를 이용한 손동작 신호 검출을 위한 신호처리시스템 연구)

  • Cheon, Woo Young;Kim, Young Chul
    • Smart Media Journal
    • /
    • v.6 no.2
    • /
    • pp.26-32
    • /
    • 2017
  • In this paper, we implement a signal-detecting electric circuit based LED lighting control system which is essential in NUI technology using EPIC converting surrounding earth electric field disturbance signals to electric potential signals. We used signal-detecting electric circuits which was developed to extract individual signal for each EPIC sensor while conventional EPIC-based development equipments provide limited forms of signals. The signals extracted from our developed circuit contributed to better performance as well as flexiblity in processes of feature extracting stage and pattern recognition stage. We designed a system which can control the brightness and on/off of LED lights with four hand gestures in order to justify its applicability to real application systems. We obtained faster pattern classification speed not only by developing an instruction system, but also by using interface control signals.

An Adaptive Method For Face Recognition Based Filters and Selection of Features (필터 및 특징 선택 기반의 적응형 얼굴 인식 방법)

  • Cho, Byoung-Mo;Kim, Gi-Han;Rhee, Phill-Kyu
    • The Journal of the Korea Contents Association
    • /
    • v.9 no.6
    • /
    • pp.1-8
    • /
    • 2009
  • There are a lot of influences, such as location of camera, luminosity, brightness, and direction of light, which affect the performance of 2-dimensional image recognition. This paper suggests an adaptive method for face-image recognition in noisy environments using evolvable filtering and feature extraction which uses one sample image from camera. This suggested method consists of two main parts. One is the environmental-adjustment module which determines optimum sets of filters, filter parameters, and dimensions of features by using "steady state genetic algorithm". The other another part is for face recognition module which performs recognition of face-image using the previous results. In the processing, we used Gabor wavelet for extracting features in the images and k-Nearest Neighbor method for the classification. For testing of the adaptive face recognition method, we tested the adaptive method in the brightness noise, in the impulse noise and in the composite noise and verified that the adaptive method protects face recognition-rate's rapidly decrease which can be occurred generally in the noisy environments.

Active Learning based on Hierarchical Clustering (계층적 군집화를 이용한 능동적 학습)

  • Woo, Hoyoung;Park, Cheong Hee
    • KIPS Transactions on Software and Data Engineering
    • /
    • v.2 no.10
    • /
    • pp.705-712
    • /
    • 2013
  • Active learning aims to improve the performance of a classification model by repeating the process to select the most helpful unlabeled data and include it to the training set through labelling by expert. In this paper, we propose a method for active learning based on hierarchical agglomerative clustering using Ward's linkage. The proposed method is able to construct a training set actively so as to include at least one sample from each cluster and also to reflect the total data distribution by expanding the existing training set. While most of existing active learning methods assume that an initial training set is given, the proposed method is applicable in both cases when an initial training data is given or not given. Experimental results show the superiority of the proposed method.

Auto-tagging Method for Unlabeled Item Images with Hypernetworks for Article-related Item Recommender Systems (잡지기사 관련 상품 연계 추천 서비스를 위한 하이퍼네트워크 기반의 상품이미지 자동 태깅 기법)

  • Ha, Jung-Woo;Kim, Byoung-Hee;Lee, Ba-Do;Zhang, Byoung-Tak
    • Journal of KIISE:Computing Practices and Letters
    • /
    • v.16 no.10
    • /
    • pp.1010-1014
    • /
    • 2010
  • Article-related product recommender system is an emerging e-commerce service which recommends items based on association in contexts between items and articles. Current services recommend based on the similarity between tags of articles and items, which is deficient not only due to the high cost in manual tagging but also low accuracies in recommendation. As a component of novel article-related item recommender system, we propose a new method for tagging item images based on pre-defined categories. We suggest a hypernetwork-based algorithm for learning association between images, which is represented by visual words, and categories of products. Learned hypernetwork are used to assign multiple tags to unlabeled item images. We show the ability of our method with a product set of real-world online shopping-mall including 1,251 product images with 10 categories. Experimental results not only show that the proposed method has competitive tagging performance compared with other classifiers but also present that the proposed multi-tagging method based on hypernetworks improves the accuracy of tagging.

Combining Radar and Rain Gauge Observations Utilizing Gaussian-Process-Based Regression and Support Vector Learning (가우시안 프로세스 기반 함수근사와 서포트 벡터 학습을 이용한 레이더 및 강우계 관측 데이터의 융합)

  • Yoo, Chul-Sang;Park, Joo-Young
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.18 no.3
    • /
    • pp.297-305
    • /
    • 2008
  • Recently, kernel methods have attracted great interests in the areas of pattern classification, function approximation, and anomaly detection. The role of the kernel is particularly important in the methods such as SVM(support vector machine) and KPCA(kernel principal component analysis), for it can generalize the conventional linear machines to be capable of efficiently handling nonlinearities. This paper considers the problem of combining radar and rain gauge observations utilizing the regression approach based on the kernel-based gaussian process and support vector learning. The data-assimilation results of the considered methods are reported for the radar and rain gauge observations collected over the region covering parts of Gangwon, Kyungbuk, and Chungbuk provinces of Korea, along with performance comparison.