• 제목/요약/키워드: Classification Performance

검색결과 3,802건 처리시간 0.033초

판별 함수를 이용한 문턱치 선정에 의한 약분류기 개선 (Improving Weak Classifiers by Using Discriminant Function in Selecting Threshold Values)

  • 샴 아디카리;유현중;김형석
    • 한국콘텐츠학회논문지
    • /
    • 제10권12호
    • /
    • pp.84-90
    • /
    • 2010
  • Viola와 Jones가 사용한 Haar-like 특징 기반 약분류기의 분별력을 개선하기 위하여, 2차 판별식에 기반한 판정 경계(decision boundary) 결정 방법을 제안한다. Viola와 Jones가 부스팅된 약분류기 앙상블을 사용해서 강분류기를 만들 때 사용한 단일 판정 경계 기반 약분류기는 특징 공간을 지나치게 단순하게 해석한 산물이어서 대부분의 경우 최적이 아니며, 객체 클래스와 배경 클래스 간을 효율적으로 분별하기에 흔히 너무 약하다. 이 논문에서 제안하는 2차 판별식 분석에 기반한 방법은 객체 클래스와 배경 클래스 사이에 다중 판정 경계를 사용하는 약분류기를 만들어준다. 1000개의 positive 샘플과 3000개의 negative 샘플을 훈련에 사용하고, 500개의 positive와 500개의 negative를 테스트에 사용한 차량 검출 실험을 통해서, 기존의 단일 문턱치 기반 약분류기 방식에 비해, 제안 기법이 더 적은 수의 분류기를 사용하면서도 더 우수한 분류 성능을 제공하는 것을 확인하였다.

멀티 신호를 이용한 환경 인식 성능 개선 (Improvement of Environment Recognition using Multimodal Signal)

  • 박준규;백성준
    • 한국콘텐츠학회논문지
    • /
    • 제10권12호
    • /
    • pp.27-33
    • /
    • 2010
  • 본 연구에서는 9가지 환경에서 마이크로폰과 자이로센서, 가속도센서를 이용하여 얻은 데이터를 특징 추출한 후 각 특징들을 조합하여 GMM (Gaussian Mixture Model)을 이용한 분류실험을 수행하였다. 기존의 환경 인식에 관한 연구들에서는 주로 마이크로폰을 이용한 환경음 데이터를 통해 인식주체의 환경 상황을 인식하고자 하였으나, 여러 노이즈들이 결합한 형태로 좋은 특징을 얻기 어려운 환경음의 구조적 특성으로 인해 그 인식 성능에 한계가 있었다. 이에 본 연구에서는 환경상황을 인식하기 위한 또 다른 방법으로 인식주체의 움직임 특성을 반영하기 위해 자이로센서와 가속도센서의 데이터를 특징에 추가 적용하는 방식을 제안하였다. 실험결과 따르면 마이크로폰을 통해 얻은 환경음의 특징만을 이용하는 기존의 방식들에 비해 가속도센서를 통해 얻은 데이터를 기존의 환경음 특징벡터와 조합한 경우에서 5% 이상 평균 인식률이 개선되는 것을 확인할 수 있었다.

귀 주변에서 측정한 유사 심전도 기반 개인 인증 시스템 개발 가능성 (Feasibility of Using Similar Electrocardiography Measured around the Ears to Develop a Personal Authentication System)

  • 최가영;박종윤;김다영;김연우;임지헌;황한정
    • 대한의용생체공학회:의공학회지
    • /
    • 제41권1호
    • /
    • pp.42-47
    • /
    • 2020
  • A personal authentication system based on biosignals has received increasing attention due to its relatively high security as compared to traditional authentication systems based on a key and password. Electrocardiography (ECG) measured from the chest or wrist is one of the widely used biosignals to develop a personal authentication system. In this study, we investigated the feasibility of using similar ECG measured behind the ears to develop a personal authentication system. To this end, similar ECGs were measured from thirty subjects using a pair of three electrodes attached behind each of the ears during resting state during which the standard Lead-I ECG was also simultaneously measured from both wrists as baseline ECG. The three ECG components, Q, R, and S, were extracted for each subject as classification features, and authentication accuracy was estimated using support vector machine (SVM) based on a 5×5-fold cross-validation. The mean authentication accuracies of Lead I-ECG and similar ECG were 90.41 ± 8.26% and 81.15 ± 7.54%, respectively. Considering a chance level of 3.33% (=1/30), the mean authentication performance of similar ECG could demonstrate the feasibility of using similar ECG measured behind the ears on the development of a personal authentication system.

딥러닝 방식의 웨어러블 센서를 사용한 미국식 수화 인식 시스템 (American Sign Language Recognition System Using Wearable Sensors with Deep Learning Approach)

  • 정택위;김범준
    • 한국전자통신학회논문지
    • /
    • 제15권2호
    • /
    • pp.291-298
    • /
    • 2020
  • 수화는 청각 장애인이 다른 사람들과 의사소통할 수 있도록 설계된 것이다. 그러나 수화는 충분히 대중화되어 있지 않기 때문에 청각 장애인이 수화를 통해서 일반 사람들과 원활하게 의사소통하는 것은 쉽지 않은 문제이다. 이러한 문제점에 착안하여 본 논문에서는 웨어러블 컴퓨팅 및 딥러닝 기반 미국식 수화인식 시스템을 설계하고 구현하였다. 이를 위해서 본 연구에서는 손등과 손가락에 장착되는 총 6개의 IMUs(Inertial Measurement Unit) 센서로 구성된 시스템을 구현하고 이를 이용한 실험을 수행하여 156개 특징이 수집된 데이터 추출을 통해서 총 28개 단어에 대한 미국식 수화 인식 방법을 제안하였다. 특히 LSTM (Long Short-Term Memory) 알고리즘을 사용하여 최대 99.89%의 정확도를 달성할 수 있었고 향후 청각 장애인들의 의사소통에 큰 도움이 될 것으로 예상된다.

RHIPE 플랫폼에서 빅데이터 로지스틱 회귀를 위한 학습 알고리즘 (Learning algorithms for big data logistic regression on RHIPE platform)

  • 정병호;임동훈
    • Journal of the Korean Data and Information Science Society
    • /
    • 제27권4호
    • /
    • pp.911-923
    • /
    • 2016
  • 빅데이터 시대에 머신러닝의 중요성은 더욱 부각되고 있고 로지스틱 회귀는 머신러닝에서 분류를 위한 방법으로 의료, 경제학, 마케팅 및 사회과학 전반에 걸쳐 널리 사용되고 있다. 지금까지 R과 Hadoop의 통합환경인 RHIPE 플랫폼은 설치 및 MapReduce 구현의 어려움으로 인해 거의 연구가 이루지 지지 않았다. 본 논문에서는 대용량 데이터에 대해 로지스틱 회귀 추정을 위한 두가지 알고리즘 즉, Gradient Descent 알고리즘과 Newton-Raphson 알고리즘에 대해 MapReduce로 구현하고, 실제 데이터와 모의실험 데이터를 가지고 이들 알고리즘 간의 성능을 비교하고자 한다. 알고리즘 성능 실험에서 Gradient Descent 알고리즘은 학습률에 크게 의존하고 또한 데이터에 따라 수렴하지 않는 문제를 갖고 있다. Newton-Raphson 알고리즘은 학습률이 불필요 할 뿐만 아니라 모든 실험 데이터에 대해 좋은 성능을 보였다.

작업환경 및 근무조건 특성과 제조업 근로자의 스트레스 증상 간의 관련성 (Work Environments and Work Conditions Associated with Stress Symptoms Among Korean Manufacturing Factory Workers)

  • 박경옥
    • 한국환경보건학회지
    • /
    • 제30권3호
    • /
    • pp.272-282
    • /
    • 2004
  • Stress is a primary health promotion issue in worksite research because psychological distress is closely related not only to workers  health status but also to their job performance. This study identified the work environment and work condition factors affecting workers  stress symptoms among the Korean manufacturing factory workers. A total of 7,818 factory workers employed in 1,562 manufacturing companies participated in the Korean nation-wide occupational health survey conducted by the Korean Occupational Safety and Health Agency in 2003. Participants were selected by the stratified proportional sampling process by standardized industry classification, company size, and locations. Trained interviewers visited the target companies and interviewed the factory workers randomly selected in each company. Work environments included physical work environments (temperature, noise, hazardous organic compounds, and so on) and psychological work environments (job demands, job control, and social support at work), and work conditions included daily working hour, rest time, and so on. Men were 71.5% and the mean age was 34.0 years old. The average working period in the present company was 6.9 years. The average stress score was 26.2 under the perfect score, 50, which means the moderate level of stress. Perceived stress had significant correlations with young age, poor physical work environment, high fatigue, bad perceived health status, and high job demands in Pearson's simple correlation analysis. Perceived health status and perceived fatigue explained 21% variance of stress symptoms and the work environment factor explained 4.8% of that; however, work condition did not have the sufficient effect. In particular, psychosocial work environment variables (job demand, job control, and social support at work) had a clear effect on stress symptoms rather than the physical work environments. Poor perceived health status, severe perceived fatigue, poor physical work environment, high job demands, low social support, heavy alcohol consumption and little exercise were significantly related to high stress symptoms in the Korean manufacturing workers.

중규모 종합병원 대상 카바페넴 내성 장내세균속균종(Carbapenem-resistant Enterobacteriaceae) 획득위험 예측모형의 외적타당도 평가 (External Validation of Carbapenem-Resistant Enterobacteriaceae Acquisition Risk Prediction Model in a Medium Sized Hospital)

  • 서수민;정인숙
    • 대한간호학회지
    • /
    • 제50권4호
    • /
    • pp.621-630
    • /
    • 2020
  • Purpose: This study was aimed to evaluate the external validity of a carbapenem-resistant Enterobacteriaceae (CRE) acquisition risk prediction model (the CREP-model) in a medium-sized hospital. Methods: This retrospective cohort study included 613 patients (CRE group: 69, no-CRE group: 544) admitted to the intensive care units of a 453-beds secondary referral general hospital from March 1, 2017 to September 30, 2019 in South Korea. The performance of the CREP-model was analyzed with calibration, discrimination, and clinical usefulness. Results: The results showed that those higher in age had lower presence of multidrug resistant organisms (MDROs), cephalosporin use ≥ 15 days, Acute Physiology and Chronic Health Evaluation II (APACHE II) score ≥ 21 points, and lower CRE acquisition rates than those of CREP-model development subjects. The calibration-in-the-large was 0.12 (95% CI: - 0.16~0.39), while the calibration slope was 0.87 (95% CI: 0.63~1.12), and the concordance statistic was .71 (95% CI: .63~.78). At the predicted risk of .10, the sensitivity, specificity, and correct classification rates were 43.5%, 84.2%, and 79.6%, respectively. The net true positive according to the CREP-model were 3 per 100 subjects. After adjusting the predictors' cutting points, the concordance statistic increased to .84 (95% CI: .79~.89), and the sensitivity and net true positive was improved to 75.4%. and 6 per 100 subjects, respectively. Conclusion: The CREP-model's discrimination and clinical usefulness are low in a medium sized general hospital but are improved after adjusting for the predictors. Therefore, we suggest that institutions should only use the CREP-model after assessing the distribution of the predictors and adjusting their cutting points.

LSA를 이용한 문장 상호 추천과 문장 성향 분석을 통한 문서 요약 (Document Summarization Using Mutual Recommendation with LSA and Sense Analysis)

  • 이동욱;백서현;박민지;박진희;정혜욱;이지형
    • 한국지능시스템학회논문지
    • /
    • 제22권5호
    • /
    • pp.656-662
    • /
    • 2012
  • 본 논문에서는 그래프기반 문장랭킹 방식인 문장 상호 추천과 문장의 주관, 객관 성향을 이용하는 문장 성향 분석을 혼합한 새로운 요약문 추출 방법에 대해서 기술한다. 문장 상호 추천에서는 문장을 단어벡터로 변환한 후에 LSA를 이용하여 문장과 문장 사이의 유사도 점수를 계산하였다. 이렇게 얻어진 유사도와 각 단어의 희귀도(Rarity Score)를 기반으로 문장과 문장 사이의 연결 강도를 정의하여, 그래프 기반 문장 랭킹 방식을 적용 하였다. 한편, 문장성향 분석에서는 주관, 객관 성향을 결정하기 위해서 기존의 Golden Standard 단어 성향 분류를 기반으로 워드넷을 확장하여 데이터베이스를 구축하였다. 이를 통해 각 단어들의 성향을 판단하고 단어들의 평균 성향을 문장의 전체 성향에 반영하여, 주관적 성향을 띄는 문장들을 선택하였다. 최종적으로 문장 상호 추천 결과와 문장 성향 분석 결과를 혼합하여 주어진 문서로부터 요약문을 추출하였다. 요약문 추출 기능의 객관적인 성능 평가를 위하여 추출된 요약문 토대로 한 분류게임을 실시하였고, 그 결과를 MS-Word에 포함된 문서 요약 기능과 비교함으로써, 제안한 모델의 효과성을 확인하였다.

고유특징 정규화 및 추출 기법을 이용한 걸음걸이 바이오 정보 기반 사용자 인식 시스템 (Gait-based Human Identification System using Eigenfeature Regularization and Extraction)

  • 이병윤;홍성준;이희성;김은태
    • 한국지능시스템학회논문지
    • /
    • 제21권1호
    • /
    • pp.6-11
    • /
    • 2011
  • 본 논문에서는 고유특징 정규화 및 추출 기법(ERE: Eigenfeature Regularization and Extraction)을 이용한 걸음걸이 바이오 정보 기반 사용자 인식 시스템을 제안한다. 먼저 카메라 센서에서 취득한 걸음걸이 시퀀스로부터 사용자 인식을 위한 특징 정보로 걸음걸이 에너지 영상(GEI: Gait Energy Image)을 생성한다. 학습 단계에서는 갤러리 걸음걸이 에너지 영상에 ERE를 적용하여 정규화된 변환행렬을 획득하여 고유공간(eigenspace)에 사상된 특징정보를 구하고, 검증 단계에서는 걸음걸이 에너지 영상을 학습단계에서 생성한 고유공간에 사상하여 최근접 이웃 분류기를 이용하여 사용자를 인식한다. 제안한 시스템의 유효성 검증을 위해 CASIA 걸음걸이 데이터셋 A를 이용하여 실험하였고, 기존 연구에 비해 인식 정확도 면에서 우수한 성능을 보여주었다.

LS-SVM을 이용한 TFT-LCD 패널 내의 결함 검사 방법 (A Defect Inspection Method in TFT-LCD Panel Using LS-SVM)

  • 최호형;이건희;김자근;주영복;최병재;박길흠;윤병주
    • 한국지능시스템학회논문지
    • /
    • 제19권6호
    • /
    • pp.852-859
    • /
    • 2009
  • TFT-LCD 자동 검사 시스템에서 결함 검출을 위한 영상은 라인 스캔 카메라(line scan camera)나 에어리어 스캔 카메라 (area scan camera)에 의해서 획득하게 된다. 그러나 임펄스 잡음과 가우시안 잡음, CCD 혹은 CMOS 센서의 한계, 조명등의 영향으로 열화된 영상이 획득되며, 한도성 결함 영역을 인간의 육안으로 구분하기 어렵게 된다. 본 논문에서는 효율적인 결함 검출을 위해 특징 추출 방법과 결함 검출 방법을 제안한다. 특징 벡터로 웨버의 법칙을 이용한 결함 영역과 주변 배경 영역의 평균 밝기 차와 주변 배경 영역의 밝기 변화를 이용한 표준편차를 이용하며, 결함 영역 검출를 위해 추출된 특징 벡터를 이용하여 비선형 SVM을 적용한다. 실험 결과는 제안한 방법이 다른 방법들 보다 성능이 우수함을 보여준다.