• 제목/요약/키워드: Classification Accuracy

검색결과 3,167건 처리시간 0.034초

유전 알고리듬 기반 집단분류기법의 개발과 성과평가 : 채권등급 평가를 중심으로 (Design and Performance Measurement of a Genetic Algorithm-based Group Classification Method : The Case of Bond Rating)

  • 민재형;정철우
    • 한국경영과학회지
    • /
    • 제32권1호
    • /
    • pp.61-75
    • /
    • 2007
  • The purpose of this paper is to develop a new group classification method based on genetic algorithm and to com-pare its prediction performance with those of existing methods in the area of bond rating. To serve this purpose, we conduct various experiments with pilot and general models. Specifically, we first conduct experiments employing two pilot models : the one searching for the cluster center of each group and the other one searching for both the cluster center and the attribute weights in order to maximize classification accuracy. The results from the pilot experiments show that the performance of the latter in terms of classification accuracy ratio is higher than that of the former which provides the rationale of searching for both the cluster center of each group and the attribute weights to improve classification accuracy. With this lesson in mind, we design two generalized models employing genetic algorithm : the one is to maximize the classification accuracy and the other one is to minimize the total misclassification cost. We compare the performance of these two models with those of existing statistical and artificial intelligent models such as MDA, ANN, and Decision Tree, and conclude that the genetic algorithm-based group classification method that we propose in this paper significantly outperforms the other methods in respect of classification accuracy ratio as well as misclassification cost.

Image classification methods applicable multiple satellite imagery

  • Jeong, Jae-Jun;Kim, Kyung-Ok;Lee, Jong-Hun
    • 대한원격탐사학회:학술대회논문집
    • /
    • 대한원격탐사학회 2002년도 Proceedings of International Symposium on Remote Sensing
    • /
    • pp.81-81
    • /
    • 2002
  • Classification is considered as one of the processes of extracting attributes from satellite imagery and is one of the usual functions in the commercial satellite image processing software. Accuracy of classification plays a key role in deciding the usage of its results. Many tremendous efforts far the higher accuracy have been done in such fields; training area selection, classification algorithm. Our research is one of these effort in different manners. In this research, we conduct classification using multiple satellite image data and evidential approach. We statistically consider the posterior probabilities and certainty in maximum likelihood classification and methodologically Dempster's orthogonal sums. Unfortunately, accuracy for the whole data sets has not assessed yet, but accuracy assessments in training fields and check fields shows accuracy improvement over 10% in overall accuracy and over 0.1 in kappa index.

  • PDF

의사결정트리의 분류 정확도 향상 (Classification Accuracy Improvement for Decision Tree)

  • 메하리 마르타 레제네;박상현
    • 한국정보처리학회:학술대회논문집
    • /
    • 한국정보처리학회 2017년도 춘계학술발표대회
    • /
    • pp.787-790
    • /
    • 2017
  • Data quality is the main issue in the classification problems; generally, the presence of noisy instances in the training dataset will not lead to robust classification performance. Such instances may cause the generated decision tree to suffer from over-fitting and its accuracy may decrease. Decision trees are useful, efficient, and commonly used for solving various real world classification problems in data mining. In this paper, we introduce a preprocessing technique to improve the classification accuracy rates of the C4.5 decision tree algorithm. In the proposed preprocessing method, we applied the naive Bayes classifier to remove the noisy instances from the training dataset. We applied our proposed method to a real e-commerce sales dataset to test the performance of the proposed algorithm against the existing C4.5 decision tree classifier. As the experimental results, the proposed method improved the classification accuracy by 8.5% and 14.32% using training dataset and 10-fold crossvalidation, respectively.

학습문서의 개수에 따른 편차기반 분류방법의 분류 정확도 (Classification Accuracy by Deviation-based Classification Method with the Number of Training Documents)

  • 이용배
    • 디지털융복합연구
    • /
    • 제12권6호
    • /
    • pp.325-332
    • /
    • 2014
  • 일반적으로 자동분류는 학습문서의 개수에 영향을 받는다고 알려져 있지만 실제로 학습문서의 수가 텍스트 자동분류에 어떻게 영향을 주는지 입증한 연구는 거의 없었다. 본 연구에서는 학습문서 수가 자동분류에 어떤 영향을 주는지 알아보기 위해 최근에 개발된 편차기반 분류방법을 중심으로 다른 분류 알고리즘과 비교하는데 초점을 두었다. 실험결과, 편차기반 분류모델은 학습문서의 수가 총 21개(7개 장르)인 상황에서 정확도가 0.8로 베이지안이나 지지벡터기계보다 우수하게 나타났다. 이것은 편차기반 분류모델이 장르내의 주제정보를 이용하여 학습하기 때문에 학습문서의 수가 적더라도 다른 학습방법보다 좋은 자질 선택 능력을 갖는다는 것을 입증한 것이다.

객체 기반 영상 분류에서 최적 가중치 선정과 정확도 분석 연구 (Study on Selection of Optimized Segmentation Parameters and Analysis of Classification Accuracy for Object-oriented Classification)

  • 이정빈;어양담;허준
    • 대한원격탐사학회지
    • /
    • 제23권6호
    • /
    • pp.521-528
    • /
    • 2007
  • 본 논문에서는 대상지역에 대한 영상을 다양한 가중치의 조합의 경우를 고려하여 객체 단위로 분할하게 되며 분할된 객체에 대하여 상호관계를 분석하여 수치적으로 표현하였다. 또한 최종적인 객체 기반영상분류에서 높은 정확도를 확보할 수 있는 가중치의 조합을 산정하였다. 연구에 사용된 영상은 Landsat-7/ETM 영상으로 대상 지역의 면적은 $11{\times}14$ Km이며 밴드 2, 3, 4의 조합을 사용하였다. 객체 간 계산은 Moran's I와 객체 내부 분산(Intrasegment Variance)을 이용하였다. 대상지역에 대하여 총 75개의 가중치 조합을 사용하여 75개의 객체 분할 영상을 생성하였다. 객체 분할 영상 중에 최종적인 영상 분류 시 높은 정확도가 예상되는 가중치 조합, 중간 정도 정확도가 예상되는 가중치 조합 그리고 낮은 정도 정확도가 예상되는 가중치 조합을 7개 선택하여 최종적인 객체기반 영상분류를 시행하고 그 정확도를 비교하였다. 정확도의 비교 결과, 가장 높은 정확도가 예상되는 가중치 조합의 객체 분할 영상의 경우 객체 기반 영상 분류 시 85% 이상의 정확도를 나타내었으며 반대로 낮은 경우는 분류 시 50% 정도의 분류 정확도를 나타내었다.

InceptionV3 기반의 심장비대증 분류 정확도 향상 연구 (A Study on the Improvement of Accuracy of Cardiomegaly Classification Based on InceptionV3)

  • 정우연;김정훈
    • 대한의용생체공학회:의공학회지
    • /
    • 제43권1호
    • /
    • pp.45-51
    • /
    • 2022
  • The purpose of this study is to improve the classification accuracy compared to the existing InceptionV3 model by proposing a new model modified with the fully connected hierarchical structure of InceptionV3, which showed excellent performance in medical image classification. The data used for model training were trained after data augmentation on a total of 1026 chest X-ray images of patients diagnosed with normal heart and Cardiomegaly at Kyungpook National University Hospital. As a result of the experiment, the learning classification accuracy and loss of the InceptionV3 model were 99.57% and 1.42, and the accuracy and loss of the proposed model were 99.81% and 0.92. As a result of the classification performance evaluation for precision, recall, and F1 score of Inception V3, the precision of the normal heart was 78%, the recall rate was 100%, and the F1 score was 88. The classification accuracy for Cardiomegaly was 100%, the recall rate was 78%, and the F1 score was 88. On the other hand, in the case of the proposed model, the accuracy for a normal heart was 100%, the recall rate was 92%, and the F1 score was 96. The classification accuracy for Cardiomegaly was 95%, the recall rate was 100%, and the F1 score was 97. If the chest X-ray image for normal heart and Cardiomegaly can be classified using the model proposed based on the study results, better classification will be possible and the reliability of classification performance will gradually increase.

Deep learning improves implant classification by dental professionals: a multi-center evaluation of accuracy and efficiency

  • Lee, Jae-Hong;Kim, Young-Taek;Lee, Jong-Bin;Jeong, Seong-Nyum
    • Journal of Periodontal and Implant Science
    • /
    • 제52권3호
    • /
    • pp.220-229
    • /
    • 2022
  • Purpose: The aim of this study was to evaluate and compare the accuracy performance of dental professionals in the classification of different types of dental implant systems (DISs) using panoramic radiographic images with and without the assistance of a deep learning (DL) algorithm. Methods: Using a self-reported questionnaire, the classification accuracy of dental professionals (including 5 board-certified periodontists, 8 periodontology residents, and 31 dentists not specialized in implantology working at 3 dental hospitals) with and without the assistance of an automated DL algorithm were determined and compared. The accuracy, sensitivity, specificity, confusion matrix, receiver operating characteristic (ROC) curves, and area under the ROC curves were calculated to evaluate the classification performance of the DL algorithm and dental professionals. Results: Using the DL algorithm led to a statistically significant improvement in the average classification accuracy of DISs (mean accuracy: 78.88%) compared to that without the assistance of the DL algorithm (mean accuracy: 63.13%, P<0.05). In particular, when assisted by the DL algorithm, board-certified periodontists (mean accuracy: 88.56%) showed higher average accuracy than did the DL algorithm, and dentists not specialized in implantology (mean accuracy: 77.83%) showed the largest improvement, reaching an average accuracy similar to that of the algorithm (mean accuracy: 80.56%). Conclusions: The automated DL algorithm classified DISs with accuracy and performance comparable to those of board-certified periodontists, and it may be useful for dental professionals for the classification of various types of DISs encountered in clinical practice.

토지피복분류에 있어 신경망과 최대우도분류기의 비교 (A comparison of neural networks and maximum likelihood classifier for the classification of land-cover)

  • 전형섭;조기성
    • 대한공간정보학회지
    • /
    • 제8권2호
    • /
    • pp.23-33
    • /
    • 2000
  • 본 연구에서는 인공위성영상을 이용한 토지피복 분류방법 중 파라메트릭한 분류와 비-파라메트릭한 분류의 대표성을 띤 최대우도 분류법과 신경망을 이용한 분류방법을 사용하여 분류정확도를 비교하였다. 분류정확도의 평가에 있어서 일반적인 분석가들이 사용하는 훈련지역에 대한 분류정확도의 분석뿐만 아니라, 시험지역에 대한 정확도분석을 하였다. 그 결과, 최대우도분류기에 비하여 신경망의 분류기가 일반적인 훈련데이터의 분류에 있어서 약 3% 우월하였으며, 지상검증데이터를 사용한 분류결과에서는 시험에 사용된 두 분류기 모두 빈약한 분류결과를 나타내었으나, 신경망에 의한 분류가 최대우도에 비하여 약 10%정도 보다 신뢰할 수 있는 결과를 얻을 수 있었다.

  • PDF

Selecting Optimal Basis Function with Energy Parameter in Image Classification Based on Wavelet Coefficients

  • Yoo, Hee-Young;Lee, Ki-Won;Jin, Hong-Sung;Kwon, Byung-Doo
    • 대한원격탐사학회지
    • /
    • 제24권5호
    • /
    • pp.437-444
    • /
    • 2008
  • Land-use or land-cover classification of satellite images is one of the important tasks in remote sensing application and many researchers have tried to enhance classification accuracy. Previous studies have shown that the classification technique based on wavelet transform is more effective than traditional techniques based on original pixel values, especially in complicated imagery. Various basis functions such as Haar, daubechies, coiflets and symlets are mainly used in 20 image processing based on wavelet transform. Selecting adequate wavelet is very important because different results could be obtained according to the type of basis function in classification. However, it is not easy to choose the basis function which is effective to improve classification accuracy. In this study, we first computed the wavelet coefficients of satellite image using ten different basis functions, and then classified images. After evaluating classification results, we tried to ascertain which basis function is the most effective for image classification. We also tried to see if the optimum basis function is decided by energy parameter before classifying the image using all basis functions. The energy parameters of wavelet detail bands and overall accuracy are clearly correlated. The decision of optimum basis function using energy parameter in the wavelet based image classification is expected to be helpful for saving time and improving classification accuracy effectively.

Integration of Multi-spectral Remote Sensing Images and GIS Thematic Data for Supervised Land Cover Classification

  • Jang Dong-Ho;Chung Chang-Jo F
    • 대한원격탐사학회지
    • /
    • 제20권5호
    • /
    • pp.315-327
    • /
    • 2004
  • Nowadays, interests in land cover classification using not only multi-sensor images but also thematic GIS information are increasing. Often, although useful GIS information for the classification is available, the traditional MLE (maximum likelihood estimation techniques) does not allow us to use the information, due to the fact that it cannot handle the GIS data properly. This paper propose two extended MLE algorithms that can integrate both remote sensing images and GIS thematic data for land-cover classification. They include modified MLE and Bayesian predictive likelihood estimation technique (BPLE) techniques that can handle both categorical GIS thematic data and remote sensing images in an integrated manner. The proposed algorithms were evaluated through supervised land-cover classification with Landsat ETM+ images and an existing land-use map in the Gongju area, Korea. As a result, the proposed method showed considerable improvements in classification accuracy, when compared with other multi-spectral classification techniques. The integration of remote sensing images and the land-use map showed that overall accuracy indicated an improvement in classification accuracy of 10.8% when using MLE, and 9.6% for the BPLE. The case study also showed that the proposed algorithms enable the extraction of the area with land-cover change. In conclusion, land cover classification results produced through the integration of various GIS spatial data and multi-spectral images, will be useful to involve complementary data to make more accurate decisions.