• Title/Summary/Keyword: Classical solutions

Search Result 266, Processing Time 0.022 seconds

ON THE PURE IMAGINARY QUATERNIONIC LEAST SQUARES SOLUTIONS OF MATRIX EQUATION

  • WANG, MINGHUI;ZHANG, JUNTAO
    • Journal of applied mathematics & informatics
    • /
    • v.34 no.1_2
    • /
    • pp.95-106
    • /
    • 2016
  • In this paper, according to the classical LSQR algorithm forsolving least squares (LS) problem, an iterative method is proposed for finding the minimum-norm pure imaginary solution of the quaternionic least squares (QLS) problem. By means of real representation of quaternion matrix, the QLS's correspongding vector algorithm is rewrited back to the matrix-form algorthm without Kronecker product and long vectors. Finally, numerical examples are reported that show the favorable numerical properties of the method.

A MULTIPLICITY RESULT FOR FOURTH-ORDER BOUNDARY VALUE PROBLEMS VIA CRITICAL POINTS THEOREM

  • Zou, Yu-Mei
    • Journal of applied mathematics & informatics
    • /
    • v.29 no.5_6
    • /
    • pp.1541-1547
    • /
    • 2011
  • In this paper, using B.Ricceri's three critical points theorem, we prove the existence of at least three classical solutions for the problem $$\{u^{(4)}(t)={\lambda}f(t,\;u(t)),\;t{\in}(0,\;1),\\u(0)=u(1)=u^{\prime}(0)=u^{\prime}(1)=0,$$ under appropriate hypotheses.

A DIFFERENTIAL EQUATION FOR MULTIPLE BESSEL POLYNOMIALS WITH RAISING AND LOWERING OPERATORS

  • Baek, Jin-Ok;Lee, Dong-Won
    • Bulletin of the Korean Mathematical Society
    • /
    • v.48 no.3
    • /
    • pp.445-454
    • /
    • 2011
  • In this paper, we first find a raising operator and a lowering operator for multiple Bessel polynomials and then give a differential equation having multiple Bessel polynomials as solutions. Thus the differential equations were found for all multiple orthogonal polynomials that are orthogonal with respect to the same type of classical weights introduced by Aptekarev et al.

GRADED POST-LIE ALGEBRA STRUCTURES, ROTA-BAXTER OPERATORS AND YANG-BAXTER EQUATIONS ON THE W-ALGEBRA W(2, 2)

  • Tang, Xiaomin;Zhong, Yongyue
    • Bulletin of the Korean Mathematical Society
    • /
    • v.55 no.6
    • /
    • pp.1727-1748
    • /
    • 2018
  • In this paper, we characterize the graded post-Lie algebra structures on the W-algebra W(2, 2). Furthermore, as applications, the homogeneous Rota-Baxter operators on W(2, 2) and solutions of the formal classical Yang-Baxter equation on $W(2,2){\ltimes}_{ad^*} W(2,2)^*$ are studied.

REGULARITY OF A DEGENERATE PARABOLIC EQUATION APPEARING IN VECER'S UNIFIED PRICING OF ASIAN OPTIONS

  • Dong, Hongjie;Kim, Seick
    • Bulletin of the Korean Mathematical Society
    • /
    • v.52 no.3
    • /
    • pp.947-953
    • /
    • 2015
  • Vecer derived a degenerate parabolic equation characterizing the price of Asian options with generally sampled average. It is well understood that there exists a unique probabilistic solution to Vecer's PDE but it remained unclear whether the probabilistic solution is a classical solution. We prove that the probabilistic solution to Vecer's PDE is indeed regular.

FINITE DIFFERENCE SCHEMES FOR A GENERALIZED NONLINEAR CALCIUM DIFFUSION EQUATION

  • Choo, S.M.
    • Journal of applied mathematics & informatics
    • /
    • v.27 no.5_6
    • /
    • pp.1247-1256
    • /
    • 2009
  • Finite difference schemes are considered for a nonlinear $Ca^{2+}$ diffusion equations with stationary and mobile buffers. The scheme inherits mass conservation as for the classical solution. Stability and $L^{\infty}$ error estimates of approximate solutions for the corresponding schemes are obtained. using the extended Lax-Richtmyer equivalence theorem.

  • PDF

ON THE CONTINUITY OF THE HARDY-LITTLEWOOD MAXIMAL FUNCTION

  • Park, Young Ja
    • Journal of the Chungcheong Mathematical Society
    • /
    • v.31 no.1
    • /
    • pp.43-46
    • /
    • 2018
  • It is concerned with the continuity of the Hardy-Little wood maximal function between the classical Lebesgue spaces or the Orlicz spaces. A new approach to the continuity of the Hardy-Littlewood maximal function is presented through the observation that the continuity is closely related to the existence of solutions for a certain type of first order ordinary differential equations. It is applied to verify the continuity of the Hardy-Littlewood maximal function from $L^p({\mathbb{R}}^n)$ to $L^q({\mathbb{R}}^n)$ for 1 ${\leq}$ q < p < ${\infty}$.

EXISTENCE AND UNIQUENESS THEOREM FOR LINEAR FUZZY DIFFERENTIAL EQUATIONS

  • You, Cuilian;Wang, Gensen
    • East Asian mathematical journal
    • /
    • v.27 no.3
    • /
    • pp.289-297
    • /
    • 2011
  • The introduction of fuzzy differential equation is to deal wit fuzzy dynamic systems. As classical differential equations, it is difficult to find the solutions to all fuzzy differential equations. In this paper an existence and uniqueness theorem for linear fuzzy differential equations is obtained. Moreover, the exact solution to linear fuzzy differential equation is given.

Critical Buckling Loads of Laminated Composites under Cylindrical Bending (원통형 굽힘을 받는 적층판의 임계좌굴 하중)

  • Lee, Soo-Yong
    • Journal of Aerospace System Engineering
    • /
    • v.1 no.4
    • /
    • pp.28-36
    • /
    • 2007
  • This paper presents critical buckling loads of laminated composites under cylindrical bending. In-plane displacements are assumed to vary exponentially through plate thickness. The accuracy of this theory is examined for symmetric/antisymmetric cross-ply, angle-ply and unsymmetric laminates under cylindrical bending. Analytical solutions are provided to investigate the effect of transverse shear deformation on critical buckling loads of the laminated plates, and the results are compared with those obtained from the first-order shear deformation plate theory and the classical laminated plate theory.

  • PDF