• Title/Summary/Keyword: Classical differential geometry

Search Result 13, Processing Time 0.019 seconds

Solution method for the classical beam theory using differential quadrature

  • Rajasekaran, S.;Gimena, L.;Gonzaga, P.;Gimena, F.N.
    • Structural Engineering and Mechanics
    • /
    • v.33 no.6
    • /
    • pp.675-696
    • /
    • 2009
  • In this paper, a unified solution method is presented for the classical beam theory. In Strength of Materials approach, the geometry, material properties and load system are known and related with the unknowns of forces, moments, slopes and deformations by applying a classical differential analysis in addition to equilibrium, constitutive, and kinematic laws. All these relations are expressed in a unified formulation for the classical beam theory. In the special case of simple beams, a system of four linear ordinary differential equations of first order represents the general mechanical behaviour of a straight beam. These equations are solved using the numerical differential quadrature method (DQM). The application of DQM has the advantages of mathematical consistency and conceptual simplicity. The numerical procedure is simple and gives clear understanding. This systematic way of obtaining influence line, bending moment, shear force diagrams and deformed shape for the beams with geometric and load discontinuities has been discussed in this paper. Buckling loads and natural frequencies of any beam prismatic or non-prismatic with any type of support conditions can be evaluated with ease.

Parametric surface and properties defined on parallelogrammic domain

  • Fan, Shuqian;Zou, Jinsong;Shi, Mingquan
    • Journal of Computational Design and Engineering
    • /
    • v.1 no.1
    • /
    • pp.27-36
    • /
    • 2014
  • Similar to the essential components of many mechanical systems, the geometrical properties of the teeth of spiral bevel gears greatly influence the kinematic and dynamic behaviors of mechanical systems. Logarithmic spiral bevel gears show a unique advantage in transmission due to their constant spiral angle property. However, a mathematical model suitable for accurate digital modeling, differential geometrical characteristics, and related contact analysis methods for tooth surfaces have not been deeply investigated, since such gears are not convenient in traditional cutting manufacturing in the gear industry. Accurate mathematical modeling of the tooth surface geometry for logarithmic spiral bevel gears is developed in this study, based on the basic gearing kinematics and spherical involute geometry along with the tangent planes geometry; actually, the tooth surface is a parametric surface defined on a parallelogrammic domain. Equivalence proof of the tooth surface geometry is then given in order to greatly simplify the mathematical model. As major factors affecting the lubrication, surface fatigue, contact stress, wear, and manufacturability of gear teeth, the differential geometrical characteristics of the tooth surface are summarized using classical fundamental forms. By using the geometrical properties mentioned, manufacturability (and its limitation in logarithmic spiral bevel gears) is analyzed using precision forging and multiaxis freeform milling, rather than classical cradle-type machine tool based milling or hobbing. Geometry and manufacturability analysis results show that logarithmic spiral gears have many application advantages, but many urgent issues such as contact tooth analysis for precision plastic forming and multiaxis freeform milling also need to be solved in a further study.

RECENT DEVELOPMENTS IN DIFERENTIAL GEOMETRY AND MATHEMATICAL PHYSICS

  • Flaherty, F.J.
    • Bulletin of the Korean Mathematical Society
    • /
    • v.24 no.1
    • /
    • pp.31-37
    • /
    • 1987
  • I want to focus on developments in the areas of general relativity and gauge theory. The topics to be considered are the singularity theorms of Hawking and Penrose, the positivity of mass, instantons on the four-dimensional sphere, and the string picture of quantum gravity. I should mention that I will not have time do discuss either classical mechanics or symplectic structures. This is especially unfortunate, because one of the roots of differential geometry is planted firmly in mechanics, Cf. [GS]. The French geometer Elie Cartan first formulated his invariant approach to geometry in a series of papers on affine connections and general relativity, Cf. [C]. Cartan was trying to recast the Newtonian theory of gravity in the same framework as Einstein's theory. From the historical perspective it is significant that Cartan found relativity a convenient framework for his ideas. As about the same time Hermann Weyl in troduced the idea of gauge theory into geometry for purposes much different than those for which it would ultimately prove successful, Cf. [W]. Weyl wanted to unify gravity with electromagnetism and though that a conformal structure would fulfill thel task but Einstein rebutted this approach.

  • PDF

Analysis of Orthotropic Spherical Shells under Symmetric Load Using Runge-Kutta Method (Runge-Kutta법을 이용한 축대칭 하중을 받는 직교 이방성 구형쉘의 해석)

  • Kim, Woo-Sik;Kwun, Ik-No;Kwun, Taek-Jin
    • Journal of Korean Association for Spatial Structures
    • /
    • v.2 no.3 s.5
    • /
    • pp.115-122
    • /
    • 2002
  • It is often hard to obtain analytical solutions of boundary value problems of shells. Introducing some approximations into the governing equations may allow us to get analytical solutions of boundary value problems. Instead of an analytical procedure, we can apply a numerical method to the governing equations. Since the governing equations of shells of revolution under symmetric load are expressed by ordinary differential equations, a numerical solution of ordinary differential equations is applicable to solve the equations. In this paper, the governing equations of orthotropic spherical shells under symmetric load are derived from the classical theory based on differential geometry, and the analysis is numerically carried out by computer program of Runge-Kutta methods. The numerical results are compared to the solutions of a commercial analysis program, SAP2000, and show good agreement.

  • PDF

Free vibration analysis of cracked thin plates using generalized differential quadrature element method

  • Shahverdi, Hossein;Navardi, Mohammad M.
    • Structural Engineering and Mechanics
    • /
    • v.62 no.3
    • /
    • pp.345-355
    • /
    • 2017
  • The aim of the present study is to develop an elemental approach based on the differential quadrature method for free vibration analysis of cracked thin plate structures. For this purpose, the equations of motion are established using the classical plate theory. The well-known Generalized Differential Quadrature Method (GDQM) is utilized to discretize the governing equations on each computational subdomain or element. In this method, the differential terms of a quantity field at a specific computational point should be expressed in a series form of the related quantity at all other sampling points along the domain. However, the existence of any geometric discontinuity, such as a crack, in a computational domain causes some problems in the calculation of differential terms. In order to resolve this problem, the multi-block or elemental strategy is implemented to divide such geometry into several subdomains. By constructing the appropriate continuity conditions at each interface between adjacent elements and a crack tip, the whole discretized governing equations of the structure can be established. Therefore, the free vibration analysis of a cracked thin plate will be provided via the achieved eigenvalue problem. The obtained results show a good agreement in comparison with those found by finite element method.

A NOTE ON SURFACES IN THE NORMAL BUNDLE OF A CURVE

  • Lee, Doohann;Yi, HeungSu
    • Journal of the Chungcheong Mathematical Society
    • /
    • v.27 no.2
    • /
    • pp.211-218
    • /
    • 2014
  • In 3-dimensional Euclidean space, the geometric figures of a regular curve are completely determined by the curvature function and the torsion function of the curve, and surfaces are the fundamental curved spaces for pioneering study in modern geometry as well as in classical differential geometry. In this paper, we define parametrizations for surface by using parametric functions whose images are in the normal plane of each point on a given curve, and then obtain some results relating the Gaussian curvature of the surface with curvature and torsion of the given curve. In particular, we find some conditions for the surface to have either nonpositive Gaussian curvature or nonnegative Gaussian curvature.

ISOTROPIC SMARANDACHE CURVES IN THE COMPLEX 4-SPACE

  • Ergut, Mahmut;Yilmaz, Suha;Unluturk, Yasin
    • Honam Mathematical Journal
    • /
    • v.40 no.1
    • /
    • pp.47-59
    • /
    • 2018
  • We define the $e^{\alpha}_1e^{\alpha}_3$-isotropic Smarandache curves of type-1 and type-2, the $e^{\alpha}_1e^{\alpha}_2e^{\alpha}_3$-isotropic Smarandache curve, and the $e^{\alpha}_1e^{\alpha}_2e^{\alpha}_4$-isotropic Smarandache curves of type-1 and type-2. Then we examine these kinds of isotropic Smarandache curve according to Cartan frame in the complex 4-space $\mathbb{C}^4$ and give some differential geometric properties of these Samarandache curves.

Free vibration behavior of viscoelastic annular plates using first order shear deformation theory

  • Moshir, Saeed Khadem;Eipakchi, Hamidreza;Sohani, Fatemeh
    • Structural Engineering and Mechanics
    • /
    • v.62 no.5
    • /
    • pp.607-618
    • /
    • 2017
  • In this paper, an analytical procedure based on the perturbation technique is presented to study the free vibrations of annular viscoelastic plates by considering the first order shear deformation theory as the displacement field. The viscoelastic properties obey the standard linear solid model. The equations of motion are extracted for small deflection assumption using the Hamilton's principle. These equations which are a system of partial differential equations with variable coefficients are solved analytically with the perturbation technique. By using a new variable change, the governing equations are converted to equations with constant coefficients which have the analytical solution and they are appropriate especially to study the sensitivity analysis. Also the natural frequencies are calculated using the classical plate theory and finite elements method. A parametric study is performed and the effects of geometry, material and boundary conditions are investigated on the vibrational behavior of the plate. The results show that the first order shear deformation theory results is more closer than to the finite elements with respect to the classical plate theory for viscoelastic plate. The more results are summarized in conclusion section.

Geometry impact on the stability behavior of cylindrical microstructures: Computer modeling and application for small-scale sport structures

  • Yunzhong Dai;Zhiyong Jiang;Kuan-yu Chen;Duquan Zuo;Mostafa habibi;H. Elhosiny Ali;Ibrahim Albaijan
    • Steel and Composite Structures
    • /
    • v.48 no.4
    • /
    • pp.443-459
    • /
    • 2023
  • This paper investigates the stability of a bi-directional functionally graded (BD-FG) cylindrical beam made of imperfect concrete, taking into account size-dependency and the effect of geometry on its stability behavior. Both buckling and dynamic behavior are analyzed using the modified coupled stress theory and the classical beam theory. The BD-FG structure is created by using porosity-dependent FG concrete, with changing porosity voids and material distributions along the pipe radius, as well as uniform and nonuniform radius functions that vary along the beam length. Energy principles are used to generate partial differential equations (PDE) for stability analysis, which are then solved numerically. This study sheds light on the complex behavior of BD-FG structures, and the results can be useful for the design of stable cylindrical microstructures.

Nonlinear vibration analysis of MSGT boron-nitride micro ribbon based mass sensor using DQEM

  • Mohammadimehr, M.;Monajemi, Ahmad A.
    • Smart Structures and Systems
    • /
    • v.18 no.5
    • /
    • pp.1029-1062
    • /
    • 2016
  • In this research, the nonlinear free vibration analysis of boron-nitride micro ribbon (BNMR) on the Pasternak elastic foundation under electrical, mechanical and thermal loadings using modified strain gradient theory (MSGT) is studied. Employing the von $K{\acute{a}}rm{\acute{a}}n$ nonlinear geometry theory, the nonlinear equations of motion for the graphene micro ribbon (GMR) using Euler-Bernoulli beam model with considering attached mass and size effects based on Hamilton's principle is obtained. These equations are converted into the nonlinear ordinary differential equations by elimination of the time variable using Kantorovich time-averaging method. To determine nonlinear frequency of GMR under various boundary conditions, and considering mass effect, differential quadrature element method (DQEM) is used. Based on modified strain MSGT, the results of the current model are compared with the obtained results by classical and modified couple stress theories (CT and MCST). Furthermore, the effect of various parameters such as material length scale parameter, attached mass, temperature change, piezoelectric coefficient, two parameters of elastic foundations on the natural frequencies of BNMR is investigated. The results show that for all boundary conditions, by increasing the mass intensity in a fixed position, the linear and nonlinear natural frequency of the GMR reduces. In addition, with increasing of material length scale parameter, the frequency ratio decreases. This results can be used to design and control nano/micro devices and nano electronics to avoid resonance phenomenon.