• 제목/요약/키워드: Classical Lamination Theory

검색결과 51건 처리시간 0.094초

Free vibration of symmetrically laminated quasi-isotropic super-elliptical thin plates

  • Altunsaray, Erkin
    • Steel and Composite Structures
    • /
    • 제29권4호
    • /
    • pp.493-508
    • /
    • 2018
  • Free vibration analysis of super-elliptical composite thin plates was investigated. Plate is formed by symmetrical quasi-isotropic laminates. Rayleigh-Ritz method was used for parametric analysis based on the governing differential equations of Classical Laminated Plate Theory (CLPT). Simply supported and clamped boundary conditions at the periphery of plates were considered. Parametric study was performed for the effect of different lamination type, aspect ratio, thickness and super-elliptical power on natural frequencies. Convergence study and validation of isotropic case were achieved. A number of design parameters like different dimensions, structure systems, panel sizes, panel thicknesses, lamination sequences, boundary conditions and loading conditions must be considered in the production of composite ships. The number of possible combinations practically may be so high that a parametric study should be carried out in order to determine the optimum design parameters rapidly during the preliminary design stage. The use of Rayleigh-Ritz method could make this parametric study possible. Thereby it might be decreasing the consumption of time, material and labor. Certain results for some different super-elliptical powers presented in tabulated form in Appendix for designers as well.

쾌속조형재료의 강도예측모델 - Fused Deposition Modeling (FDM) (Strength Prediction Model of Rapid Prototyping Parts - Fused Deposition Modeling (FDM))

  • 안성훈;이선영;백창일;추원식
    • Composites Research
    • /
    • 제15권6호
    • /
    • pp.38-43
    • /
    • 2002
  • 쾌속조형(Rapid Prototyping)기술은 다양한 형태치 재료를 사용하여 초기모형을 제작할 수 있다. Stratasys사의 FDM은 플라스틱 재료로 조형물을 제작하는 대표적인 쾌속조형공정이다. 또한 FDM으로 제작된 부품들은 하중을 받는 구조용 재료로도 사용된다. FDM은 약 300$\mu$m 두께의 가는 필라멘트의 형태의 일정한 방향으로 재료를 적층하므로, FDM으로 제작된 부품들은 이방성 재료의 성질을 나타낸다. 본 연구에서는 FDM 부품의 인장강도를 예측하기 위한 해석방법을 제시하고자 한다. 복합재를 위한 Classical Lamination Theory를 사용하여 컴퓨터 코드를 작성하였다. FDM 제품의 파괴를 예측하기 위하여 계산펀드에 Tsai-Wu failure criterion 이론을 도입하였다. 해석방법에 의해 예상되는 인장강도와 실제 실험으로 얼은 수치를 비교하였다. 예상치가 측정치에 근사한 값을 보이므로 본 계산식의 타당성이 입증되었다. 덧붙여서 FDM의 강도계산과 설계규칙이 웹기반의 제안서비스(FDMAS)에서 제공된다.

잔류응력을 고려한 섬유 금속 적층판의 기계적 물성치 예측에 관한 이론적 연구 (Analytical Study for the Prediction of Mechanical Properties of a Fiber Metal Laminate Considering Residual Stress)

  • 강동식;이병언;박으뜸;김정;강범수;송우진
    • 소성∙가공
    • /
    • 제23권5호
    • /
    • pp.289-296
    • /
    • 2014
  • Uniaxial tensile tests were conducted to accurately evaluate the in-plane mechanical properties of fiber metal laminates (FMLs). The FMLs in the current study are comprised of a layer of self-reinforced polypropylene (SRPP) sandwiched between two layers of aluminum alloy 5052-H34. The nonlinear tensile behavior of the FMLs under in-plane loading conditions was investigated using both numerical simulations and a theoretical analysis. The numerical simulation was based on finite element modeling using the ABAQUS/Explicit code and the theoretical constitutive model was based on the volume fraction approach using the rule of mixture and a modification of the classical lamination theory, which incorporates the elastic-plastic behavior of the aluminum alloy and the SRPP. The simulations and the model are used to predict the inplane mechanical properties such as stress-strain response and deformation behavior of the FMLs. In addition, a post-stretching process is used to reduce the thermal residual stresses before uniaxial tensile testing of the FMLs. Through comparison of both the numerical simulations and the theoretical analysis with the experimental results, it is concluded that the numerical simulation model and the theoretical approach can describe with sufficient accuracy the actual tensile stress-strain behavior of the FMLs.

복합재료 골프샤프트의 적층최적화 (Optimization of stacking sequence for composite golf club shafts)

  • 김무선;한동철;김선진;이우일
    • Composites Research
    • /
    • 제20권1호
    • /
    • pp.1-7
    • /
    • 2007
  • 본 논문에서는 골프클럽샤프트의 정적특성의 최적화 방법론을 제시하였다. 복합재료를 사용한 샤프트의 최적성능향상을 위한 쉬트 프리프레그의 적층순서를 구하였다. 클럽샤프트의 굽힘 강성과 비틀림 강성의 동시 최적화를 위하여 새로운 최적화 목적함수를 제시하였다. 샤프트의 정적특성 분석을 위하여 고전적층 이론을 적용하였으며 최적화 방법으로서 적층순서를 설계변수로 정의하는 유전알고리즘을 사용하였다. 또한 얻어진 최적적층순서를 바탕으로 한 샤프트의 동적특성을 분석하였다.

비대칭 복합적층판 의 Warping 해석 (Warping Analysis of Unsymmetric Laminated Composites)

  • 전완주;홍창선
    • 대한기계학회논문집
    • /
    • 제7권4호
    • /
    • pp.404-409
    • /
    • 1983
  • The warping of unsymmetric laminated composites is induced by residual curing stress at the room temperature. Classical lamination theory (C.L.T.) predicts the room temperature shapes of all unsymmetric laminates to be a saddle. Experimental observations, however, indicate some unsymmetric laminated composites have cylindrical room temperature shapes. This anomalous behavior is explained by the extention of C.L.T. which involves Von Karman's large deflection theory. It is shown that, depending on the thickness, width, length, curing temperature and room temperature of the laminate, critical boundaries of the shape change are determined. Theoretical predictions are compared with experimental results of Toray Graphite/Epoxy {O$_{n}$/90$_{n}$}$_{T}$./....

An investigation of non-linear optimization methods on composite structures under vibration and buckling loads

  • Akbulut, Mustafa;Sarac, Abdulhamit;Ertas, Ahmet H.
    • Advances in Computational Design
    • /
    • 제5권3호
    • /
    • pp.209-231
    • /
    • 2020
  • In order to evaluate the performance of three heuristic optimization algorithms, namely, simulated annealing (SA), genetic algorithm (GA) and particle swarm optimization (PSO) for optimal stacking sequence of laminated composite plates with respect to critical buckling load and non-dimensional natural frequencies, a multi-objective optimization procedure is developed using the weighted summation method. Classical lamination theory and first order shear deformation theory are employed for critical buckling load and natural frequency computations respectively. The analytical critical buckling load and finite element calculation schemes for natural frequencies are validated through the results obtained from literature. The comparative study takes into consideration solution and computational time parameters of the three algorithms in the statistical evaluation scheme. The results indicate that particle swarm optimization (PSO) considerably outperforms the remaining two methods for the special problem considered in the study.

Dynamic analysis for anti-symmetric cross-ply and angle-ply laminates for simply supported thick hybrid rectangular plates

  • Benhenni, Mohamed Amine;Daouadji, Tahar Hassaine;Abbes, Boussad;Adim, Belkacem;Li, Yuming;Abbes, Fazilay
    • Advances in materials Research
    • /
    • 제7권2호
    • /
    • pp.119-136
    • /
    • 2018
  • In this paper, static and vibration analysis for anti-symmetric cross-ply and angle- ply carbon/glass hybrid laminates rectangular composite plate are presented. In this analysis, the equations of motion for simply supported thick laminated hybrid rectangular plates are derived and obtained through the use of Hamilton's principle. The closed-form solutions of anti-symmetric cross-ply and angle- ply laminates are obtained using Navier solution. The effects of side-to-thickness ratio, aspect ratio, and lamination schemes on the fundamental frequencies loads are investigated. The study concludes that shear deformation laminate theories accurately predict the behavior of composite laminates, whereas the classical laminate theory over predicts natural frequencies. The excellent accuracy of the present analytical solution is confirmed by making some comparisons of the present results with those available in the literature. It can be concluded that the proposed theory is accurate and simple in solving the free vibration behaviors of anti-symmetric cross-ply and angle- ply hybrid laminated composite plates.

등가 이방성 복합재 평판에 대한 파손 특성에 관한 연구 (A Study on the Failure Characteristics of Equivalent Anisotropic Composite Plates)

  • 윤재호;김한준;김용하
    • 항공우주시스템공학회지
    • /
    • 제16권5호
    • /
    • pp.35-42
    • /
    • 2022
  • 본 논문에서는 효율적인 파손해석을 위해 등가 이방성 복합재 평판으로 가정된 복잡한 적층 패턴을 가진 복합재 적층판의 기계적 등가 물성을 예측하였다. 등가 이방성 복합재 평판의 강성은 고전적층판 이론을 기반으로 정의하였으며, 미시역학적 파손이론이 적용된 복합재 적층판의 파손 거동을 묘사할 수 있는 등가 파손방정식을 새롭게 정의하였다. 최종적으로 유한요소해석 결과와 비교하여 제안된 이론을 검증하였으며, 제안된 이론은 높은 계산 효율성과 단순성이라는 이점 때문에 항공우주분야 복합재 적층판의 파손 특성 분석에 적합하다고 판단된다.

Dynamic stiffness matrix of composite box beams

  • Kim, Nam-Il
    • Steel and Composite Structures
    • /
    • 제9권5호
    • /
    • pp.473-497
    • /
    • 2009
  • For the spatially coupled free vibration analysis of composite box beams resting on elastic foundation under the axial force, the exact solutions are presented by using the power series method based on the homogeneous form of simultaneous ordinary differential equations. The general vibrational theory for the composite box beam with arbitrary lamination is developed by introducing Vlasov°Øs assumption. Next, the equations of motion and force-displacement relationships are derived from the energy principle and explicit expressions for displacement parameters are presented based on power series expansions of displacement components. Finally, the dynamic stiffness matrix is calculated using force-displacement relationships. In addition, the finite element model based on the classical Hermitian interpolation polynomial is presented. To show the performances of the proposed dynamic stiffness matrix of composite box beam, the numerical solutions are presented and compared with the finite element solutions using the Hermitian beam elements and the results from other researchers. Particularly, the effects of the fiber orientation, the axial force, the elastic foundation, and the boundary condition on the vibrational behavior of composite box beam are investigated parametrically. Also the emphasis is given in showing the phenomenon of vibration mode change.

좌굴하중하에서 복합적층판의 최적 적층 설계 (Optimal Stacking Sequence Design of Laminated Composites under Buckling Loads)

  • 윤성진;김관영;황운봉;하성규
    • 한국CDE학회논문집
    • /
    • 제1권2호
    • /
    • pp.107-121
    • /
    • 1996
  • An optimization procedure is proposed to determine the optimal stacking sequence on the buckling of laminated composite plates with midplane symmetry under various loading conditions. Classical lamination theory is used for the determination of the critical buckling load of simply supported angle-ply laminates. Analysis is performed by the Galerkin method and Rayleigh-Ritz method. The approximate solution of buckling is replaced by the algorithms that produce generalized eigenvalue problem. Direct search technique is employed to solve the optimization problem effectively. A series of computations is carried out for plates having different aspect ratios, different load ratios and different number of lay-ups.

  • PDF