Journal of the Korea Institute of Information and Communication Engineering
/
v.22
no.11
/
pp.1435-1441
/
2018
Online signature verification is one of the simple and efficient methods of identity verification and has less resistance than other biometric technologies. To handle signature verification as a classification problem, it is necessary to gather forgery signatures, which is not easy in most practical applications. It is not easy to obtain a large number of genuine signatures either. In this paper, one class SVM is used to tackle the forgery signature problem and someone else's signatures are used as general handwriting data to solve the genuine signature problem. Someone else's signature does not share shape-based features with the signature to be verified, but it contains the general characteristics of a signature and useful in verification. Verification rate can be improved by using the general handwriting data, which can be confirmed through the experimental results.
The objective of this study was to conduct a 'Theory of Home Economics Education' class using online problem-based learning(PBL) for prospective home economics(HE) teachers. The aim was to enable teachers to analyze the learning experience in the classroom, and to prepare operational strategies for online PBL on this basis. In order to achieve this, online PBL was applied to 31 students participating in the 'Theory of Home Economics Education' at the Department of HE in a university in Seoul, and the results were collected from the learning process. This also involved a reflective journal, a survey on the learning experience and the impacts was conducted. Moreover, analysis was undertaken on the learning activities, learning difficulties, and improvements. The main research results are as follows. Firstly, students accessed Webex, an online video conferencing program, and performed two PBL tasks: 'Making Home Economics Promotion Materials' and 'Presenting Teaching Strategies to Improve Learner's Immersion in Online Classes'. Secondly, learners established their own identity of HE learned about the HE class plans themselves. They also encountered realistic experience as HE teachers and learned communication and collaboration skills. Furthermore, they acquired creative problem-solving and self-directed learning ability, community consciousness, as well as the attitude of consideration and respect. Thirdly, students lacked knowledge of learning content and encountered difficulty in solving data research, analysis processes, and unstructured problems. They were affected by a lack of time and encountered problem in communicating with other team members in an online environment. As an improvement in online class operation, it was considrered necessary to reduce the learning burden by securing time and reducing the number of assignments, as well as to explain active interaction with instructors and PBL.
Journal of Korean Society of Industrial and Systems Engineering
/
v.45
no.4
/
pp.233-239
/
2022
The injection molding process is a process in which thermoplastic resin is heated and made into a fluid state, injected under pressure into the cavity of a mold, and then cooled in the mold to produce a product identical to the shape of the cavity of the mold. It is a process that enables mass production and complex shapes, and various factors such as resin temperature, mold temperature, injection speed, and pressure affect product quality. In the data collected at the manufacturing site, there is a lot of data related to good products, but there is little data related to defective products, resulting in serious data imbalance. In order to efficiently solve this data imbalance, undersampling, oversampling, and composite sampling are usally applied. In this study, oversampling techniques such as random oversampling (ROS), minority class oversampling (SMOTE), ADASYN(Adaptive Synthetic Sampling), etc., which amplify data of the minority class by the majority class, and complex sampling using both undersampling and oversampling, are applied. For composite sampling, SMOTE+ENN and SMOTE+Tomek were used. Artificial neural network techniques is used to predict product quality. Especially, MLP and RNN are applied as artificial neural network techniques, and optimization of various parameters for MLP and RNN is required. In this study, we proposed an SA technique that optimizes the choice of the sampling method, the ratio of minority classes for sampling method, the batch size and the number of hidden layer units for parameters of MLP and RNN. The existing sampling methods and the proposed SA method were compared using accuracy, precision, recall, and F1 Score to prove the superiority of the proposed method.
This study is a case study on investigating students' learning behavior in the online English reading class of an on-off course. For this purpose, a survey was conducted on a total of 77 students from an English listening and reading course and phone interview with 5 students was implemented. The findings revealed that regularity of learning interval and learning sequence need to be improved through student management in order to increase the effect of online learning. In case of lecture watching, the students are good at utilizing the strengths of taped lecture, such as using pause and repeating watching. However, more research need to be done on how to develop online lecture to enhance students' understanding of the lecture. Regarding the offline review quiz that is supposed to stimulate students into their more positive watching of the lecture, it is suggested that a few of its related elements such as the online learning period and the number of quiz questions be corrected for its better effect.
Thang Huu Nguyen;Thanh Hai Pham;Hue Thi Vu;Minh-Nguyet Thi Doan;Huong Thanh Tran;Mai Phuong Nguyen
Quality Improvement in Health Care
/
v.30
no.1
/
pp.3-14
/
2024
Purpose: We conducted this study with the aim of characterizing safety attitudes (SA) among medical staff in a disadvantaged area of Vietnam and examining associated factors with SA. Methods: A cross-sectional survey was conducted on 442 health staff members at four hospitals in Son La Province from June until August 2021. We used the Vietnamese shortened edition of the Safety Attitudes Questionnaire to measure the SA of study participations. We chose latent class analysis (LCA) to identifying the number of latent classes of SA among the study subjects. Multinomial logistic regression was used to examine factors associated with the identified SA classes. Results: The results of our LCA showed that there were three latent classes, namely high SA group (n=150, 33.9%), moderate SA group (n=236, 53.4%), and low SA group (n=56, 12.7%). The multinomial logistic regression analysis found that medical staff who had university education and above, who were nurses, and who served in non-clinical areas were more likely to be in the moderate SA group and in the high SA group than in the low SA group. Conclusion: Based on these results, several recommendations could be made to improve the SA of healthcare workers in disadvantaged areas. Further research with larger sample sizes and more diverse populations is needed to confirm these findings and to develop effective interventions to improve the SA of healthcare workers in disadvantaged areas.
The Journal of the Institute of Internet, Broadcasting and Communication
/
v.24
no.1
/
pp.83-88
/
2024
In this research, we propose a Semi-Supervised learning based railroad surface defect detection method. The Resnet50 model, pretrained on ImageNet, was employed for the training. Data without labels are randomly selected, and then labeled to train the ResNet50 model. The trained model is used to predict the results of the remaining unlabeled training data. The predicted values exceeding a certain threshold are selected, sorted in descending order, and added to the training data. Pseudo-labeling is performed based on the class with the highest probability during this process. An experiment was conducted to assess the overall class classification performance based on the initial number of labeled data. The results showed an accuracy of 98% at best with less than 10% labeled training data compared to the overall training data.
Class imbalance is one of the significant challenges in deep learning tasks, particularly pronounced in areas with limited data. This study proposes a new approach that utilizes minimal labeled data for effectively classifying tomato leaf diseases. We introduced a recursive learning method using the YOLOv8 model. By utilizing the detection predictions of images on the training data as additional training data, the number of labeled data is progressively increased. Unlike conventional data augmentation and up-down sampling techniques, this method seeks to fundamentally solve the class imbalance problem by maximizing the utility of actual data. Based on the secured labeled data, tomato leaves were extracted, and diseases were classified using the EfficientNet model. This process achieved a high accuracy of 98.92%. Notably, a 12.9% improvement compared to the baseline was observed in the detection of Late blight diseases, which has the least amount of data. This research presents a methodology that addresses data imbalance issues while offering high-precision disease classification, with the expectation of application to other crops.
Journal of the Korean association of regional geographers
/
v.11
no.4
/
pp.523-535
/
2005
This study is aimed at researching the applicability of teaching-learning models in highschool geography class by designing the models on the basis of geographical experience the learners go through everyday life. The procedures and results of the application of the models are as followed. First, the systematization of the teaching concepts should be preceded to internalize the learners cognitive development, that is, to systemize cognitive structure. The concrete learning points of geographical concepts from the units about Migration and Population Changes are systemized with 'migration' as a higher concept, 'moving type' as basic concept, 'moving factors' as the lower concept. Everyday geographical experiences the students can go through are surveyed. Second, as preparation for the geography class, hand-outs about family-moving history and the change of the family number were used as basic material for real class teaching activity, showing the learners' general concepts are very effective as basic units which can be easily understood and accessed to. Third, with the experimental class, the geography class should secure the flexibility on the teaching-learning process. The result of applying the newly developed teaching-learning model to actual geography classes was that experimental group had higher achievement rate than the compared group with general teaching-learning model applied to. The result of analyzing students' response of the new teaching-learning model was that the students were interested and satisfied emphatically and they showed positive response in regard to practical use of the contents. Here, it is noticeable that the new teaching-learning model causes the students to be interested. But it's also found that there's no big difference in improving the students' inquisitive mind.
The purpose of this study was to examine teachers’ awareness of chemical waste produced in elementary school laboratory experimentation and how this awareness relates to collection and disposal of chemical waste. More specifically, the study looked at the correlation between the handling of chemical waste and factors such as years of teachers’ educational career, class size and amount of waste produced. The target population were 250 elementary school teachers in Gyeongnam area and 237 subjects were responded. Among the 237 responses, 37 cases that did not complete the questionnaire were eliminated. Therefore, 200 responses were analyzed in this study. The survey questionnaire consisted of 15 questions. The categories of the questionnaire were their skills of management and treatment of the chemical waste. The data collected were analyzed by SPSS 10.0, and the relations among variables such as class sizes and years of teaching experience were also analyzed by $x^2-test.$ The results in this study were as follows: First, there were no significant differences between the years of teaching and class sizes in the training experience of chemical waste disposal. Second, there was a significant difference between the science laboratory size and class sizes in the laboratory actual condition. In addition, in the relations between the number of times of experimentation and the years of teaching experience, there was a significant difference. Third, in terms of the discharge amount of chemical waste, there was a significant difference between the years of teaching and class sizes. Fourth, in the simple chemistry waste disposal process in the science laboratory, there also was a significant difference between the kinds of experimental equipments that used in the experimentation and the years of teaching. Based on this study, it was found that great amount of the chemical wastes produced in the science laboratory dumped into the drain and the treatment process of chemical waste was also inattentive. Even the importance of environmental education is emphasized in the elementary education, the basic problems occurred in the science laboratory is disregarded. Therefore, not only students but teachers have to pay attention to the disposal process of chemical waste in the laboratory in order to prevent environment pollution. Furthermore, the efforts of preventing environment pollution are needed such as opening the teacher training course about environment education, minimal use of chemicals, treatment of chemical waste, and so forth.
Journal of the Korea Academia-Industrial cooperation Society
/
v.17
no.12
/
pp.253-261
/
2016
This study discusses the effective management of mixed-ages classes in kindergarten. For the study, 300 kindergarten teachers in charge of mixed classes for regular courses completed a self-reported questionnaire through a web survey. The data were analyzed by chi-square test and presented by frequency and percentage. Mixed-ages classes had relatively fewer children than one-age classes and they were prevalent in public kindergartens and rural areas. The results were as follows. First, mixed-ages classes were induced by the small number of young children. Second, teachers managed their classes with difficulty due to the lack of supporting staff and few chances for additional teaching training. Third, teachers needed supporting human resources for their teaching and administration assistances. About 23.0% of kindergartens received assistance such as additional training, financial assistance, and consulting supervision from related institutions. The study results suggested the challenges in regulations of age ratio in mixed-ages class, additional teaching training for teachers in mixed-ages classes and replacement of mixed-ages class to same age class as the long-term plan.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.