• Title/Summary/Keyword: Clamp voltage ratio

Search Result 27, Processing Time 0.026 seconds

Degradation Characteristics of Pr/Co/Cr/Er Co-doped Zinc Oxide Varistors by Impulse Current Stress

  • Nahm, Choon-Woo
    • Transactions on Electrical and Electronic Materials
    • /
    • v.15 no.6
    • /
    • pp.348-352
    • /
    • 2014
  • In light of the sure protection function, the most important factors of a varistor are the clamping voltage ratio and degradation characteristics. The degradation characteristics of Pr/Co/Cr/Er co-doped zinc oxide varistors were investigated by impulse currents (0.4~2.1 kA) stress for the specified content of $Er_2O_3$ (0.5 and 2.0 mol%). The varistor doped with 2.0 mol% $Er_2O_3$ exhibited the best clamp characteristics, with the clamp voltage ratio (K) in the range of K = 1.63~1.88 at the impulse currents of 5-50 A. However, the varistor doped with 0.5 mol% exhibited excellent electrical stability, with variation rates for the breakdown field, for the nonlinear coefficient, and for the leakage current density of -6.9%, -12.6%, and -14.3%, respectively, after application of an impulse current of 2.1 kA. In contrast, the varistor doped with 2.0 mol% was destroyed after application of an impulse current of 1.2 kA.

A Study on Quasi Resonant Converter with Low Switching Surge Voltage Characteristics by Applying Auxiliary Winding Type Active Snubber (보조 권선형 능동 스너버를 적용하여 낮은 스위치 서지 전압 특성을 갖는 유사 공진형 컨버터에 관한 연구)

  • Ahn, Tae Young
    • Journal of the Semiconductor & Display Technology
    • /
    • v.17 no.4
    • /
    • pp.56-61
    • /
    • 2018
  • In this paper, a new type of active snubber was proposed to lower the excessive rated voltage of the clamp capacitor which was a problem in the conventional circuit by applying auxiliary winding into the active snubber. A simplified equivalent circuit of the proposed snubber was derived by applying it to QR flyback converter, and the equivalent circuits for each switch state was shown under the steady-state condition. In addition, the maximum voltage of the clamp capacitor as well as the main switch was found by using the steady-state equations. In particular, it was found that the clamp capacitor voltage could be controlled by the auxiliary winding ratio. In order to verify the utility and practicality of the proposed converter with auxiliary winding type active snubber circuit, a prototype with an output voltage of 19V and a maximum load current of 6A was produced and the results were reported.

Study of ZVS-PWM Series Resonant Converter with Active-Clamp Technique (액티브 클램프 기법을 이용한 영전압 스위칭 직렬 공진형 컨버터에 관한 연구)

  • Jeon, Hee-Cheol;Kim, Yong;Jung, Kye-Cheon;Kim, Pil-Soo;Lee, Eun-Young
    • Proceedings of the KIEE Conference
    • /
    • 1999.07f
    • /
    • pp.2674-2677
    • /
    • 1999
  • Resonant converters have several salient features such as high efficiency and low noise. Therefore, ZVS-PWM controlled series resonant converter with active-clamp technique is presented. The combination of an active-clamp technique and resonant circuit makes it possible to control the output voltage of the resonant converter with PWM. This new resonant converter was implemented and has achieved a good controllability. In this paper, the normal load characteristics and abnormal voltage increase in the case of the light load are analyzed. As a result, it is clarified that the stray capacitance of the transformer is a cause of the abnormal voltage increase. Then, it is confirmed that the abnormal voltage increase is suppressed by decreasing the duty ratio. ZVS condition is analyzed. The maximum efficiency of 89% is obtained for the output of 10V and 5A.

  • PDF

Analysis and Implementation of a New Single Switch, High Voltage Gain DC-DC Converter with a Wide CCM Operation Range and Reduced Components Voltage Stress

  • Honarjoo, Babak;Madani, Seyed M.;Niroomand, Mehdi;Adib, Ehsan
    • Journal of Power Electronics
    • /
    • v.18 no.1
    • /
    • pp.11-22
    • /
    • 2018
  • This paper presents a single switch, high step-up, non-isolated dc-dc converter suitable for renewable energy applications. The proposed converter is composed of a coupled inductor, a passive clamp circuit, a switched capacitor and voltage lift circuits. The passive clamp recovers the leakage inductance energy of the coupled inductor and limits the voltage spike on the switch. The configuration of the passive clamp and switched capacitor circuit increases the voltage gain. A wide continuous conduction mode (CCM) operation range, a low turn ratio for the coupled inductor, low voltage stress on the switch, switch turn on under almost zero current switching (ZCS), low voltage stress on the diodes, leakage inductance energy recovery, high efficiency and a high voltage gain without a large duty cycle are the benefits of this converter. The steady state operation of the converter in the continuous conduction mode (CCM) and discontinuous conduction mode (DCM) is discussed and analyzed. A 200W prototype converter with a 28V input and a 380V output voltage is implemented and tested to verify the theoretical analysis.

A Novel Two-Switch Active Clamp Forward Converter for High Input Voltage Applications

  • Kim, Jae-Kuk;Oh, Won-Sik;Moon, Gun-Woo
    • Proceedings of the KIPE Conference
    • /
    • 2008.06a
    • /
    • pp.520-522
    • /
    • 2008
  • A novel two-switch active clamp forward converter suitable for high input voltage applications is proposed. The main advantage of the proposed converter, compared to the conventional active forward converters, is that circuit complexity is reduced and the voltage stress of the main switches is effectively clamped to either the input voltage or the clamping capacitor voltage by two clamping diodes without limiting the maximum duty ratio. Also, the clamping circuit does not include additional active switches, so a low cost can be achieved without degrading the efficiency. Therefore, the proposed converter can feature high efficiency and low cost for high input voltage applications. The operational principles, features, and design considerations of the proposed converter are presented in this paper. The validity of this study is confirmed by the experimental results from a prototype with 200W, 375V input, and 12V output.

  • PDF

A Zero-Voltage-Switching Programmable Power Supply (영전압 스위칭 프로그래머블 전원장치에 관한 연구)

  • O, Deok-Jin;Im, Sang-Eon;Kim, Hui-Jun
    • The Transactions of the Korean Institute of Electrical Engineers B
    • /
    • v.49 no.8
    • /
    • pp.551-556
    • /
    • 2000
  • A zero-voltage-switching(ZVS) programmable power supply employing the ZVS active clamp forward converter is suggested. Through the analysis on operation region of the supply, the constant power region and the maximum current limit region are clearly identified. Furthermore, the duty ratio range corresponding to the variation range of the output voltages and the control scheme at the minimum duty ration region are presented. Finally, in order to vefity the validity of the operation for the proposed power supply, experimental evaluation results obtained on an 1kW prototype power supply for the 198~242VAC input voltage range(220VAC$\pm$10%), the 0~25V output voltage range, and the 100kHz switching frequency are presented.

  • PDF

Voltage Clamped Tapped-Inductor Boost Converter with High Voltage Conversion Ratio (고승압비를 갖는 전압 클램프 탭인덕터 부스트 컨버터)

  • Kang, Jung-Min;Lee, Sang-Hyun;Hong, Sung-Soo;Han, Sang-Kyoo
    • The Transactions of the Korean Institute of Power Electronics
    • /
    • v.17 no.1
    • /
    • pp.34-40
    • /
    • 2012
  • In this paper, voltage clamped tapped-inductor boost converter with high voltage conversion ratio is proposed. The conventional tapped-inductor boost converter has a serious drawback such as high voltage stresses across all power semiconductors due to the high resonant voltage caused by the leakage inductor of tapped inductor. Therefore, the dissipative snubber is essential for absorbing this resonant voltage, which could degrade the overall power conversion efficiency. To overcome these drawbacks, the proposed converter employs a voltage clamping capacitor instead of the dissipative snubber. Therefore, the voltage stresses of all power semiconductors are not only clamped as the output voltage but the power conversion efficiency can also be considerably improved. Moreover, since the energy stored in the clamp capacitor is transferred to the output side together with the input energy, the proposed converter can achieve the higher voltage conversion ratio than the conventional tapped-inductor boost converter. Therefore, the proposed converter is expected to be well suited to various applications demanding the high efficiency and high voltage conversion ratio. To confirm the validity of the proposed circuit, the theoretical analysis and experimental results of the proposed converter are presented.

A Study of ZVS Two-Switch Forward Converter Using Auxiliary Switch (보조 스위치를 사용한 ZVS Two-Switch 포워드 컨버터에 대한 연구)

  • Jung, Min-Hyuk;Kim, Yong;Um, Tae-Min;Lee, Kyu-Hun;Lee, Dong-Hyun
    • Proceedings of the KIEE Conference
    • /
    • 2009.07a
    • /
    • pp.965_966
    • /
    • 2009
  • In this paper, a new soft-switching Two-switch Forward converter topology has been proposed. Compared with conventional two-switch forward converter, the proposed converter employs an auxiliary switch and a clamp capacitor to instead of two reset diodes, not only its duty cycle can exceed 0.5 to achieve wide range input voltage, but also soft switching can be achieved for all switches. Especially, voltage stress across main switches can be clamped at $1/2V_{in}$, voltage stress across auxiliary switch can be clamped at $V_{in}$. In addition, due to clamp capacitor series with the transformer, duty ratio can be extended with equation $V_o=\frac{V_{in}(1-D}D{N}$. Therefore, as a kind of better cost-effective approach, it is very attractive for high input, wide range and high efficiency application.

  • PDF

Sintering Effect on Clamping Characteristics and Pulse Aging Behavior of ESD-Sensitive V2O5/Mn3O4/Nb2O5 Codoped Zinc Oxide Varistors

  • Nahm, Choon-Woo
    • Transactions on Electrical and Electronic Materials
    • /
    • v.16 no.6
    • /
    • pp.308-311
    • /
    • 2015
  • V2O5/Mn3O4/Nb2O5 codoped zinc oxide varistor ceramics were sintered at a temperature range as low as 875~950℃. The voltage clamping characteristics of V2O5/Mn3O4/Nb2O5 codoped zinc oxide varistor ceramics were investigated at a pulse current range of 1~50 A. The sintering temperature had a significant effect on clamp voltage ratio, which exhibits surge protection capabilities. The varistor ceramics sintered at 875℃ exhibited the best clamping characteristics, in which the clamp voltage ratio was 2.69 at a pulse current of 50 A. The varistor ceramics sintered at 900℃ exhibited the highest electrical stability, where = 3,824 V/cm (initial 3,909 V/cm), and E1 mA/cm2 = 27 (initial 39) after application of a pulse current of 100 A.

SVPWM Strategies for Three-level T-type Neutral-point-clamped Indirect Matrix Converter

  • Tuyen, Nguyen Dinh;Phuong, Le Minh;Lee, Hong-Hee
    • Journal of Power Electronics
    • /
    • v.19 no.4
    • /
    • pp.944-955
    • /
    • 2019
  • In this paper, the three-level T-type neutral-point-clamped indirect matrix converter topology and the relative space vector modulation methods are introduced to improve the voltage transfer ratio and output voltage performance. The presented converter topology is based on combinations of cascaded-rectifier and three-level T-type neutral-point-clamp inverter. It can overcome the limitation of voltage transfer ratio of the conventional matrix converter and the high voltage rating of power switches of conventional matrix converter. Two SVPWM strategies for proposed converter are described in this paper to achieve the advantages features such as: sinusoidal input/output currents and three-level output voltage waveforms. Results from Psim 9.0 software simulation are provided to confirm the theoretical analysis. Hence, a laboratory prototype was implemented, and the experimental results are shown to validate the simulation results and to verify the effectiveness of the proposed topology and modulation strategies.