• Title/Summary/Keyword: ClO$_4^-$

Search Result 2,351, Processing Time 0.03 seconds

Removal of Perchlorate Using Reverse Osmosis and Nanofiltration Membranes

  • Han, Jonghun;Kong, Choongsik;Heo, Jiyong;Yoon, Yeomin;Lee, Heebum;Her, Namguk
    • Environmental Engineering Research
    • /
    • v.17 no.4
    • /
    • pp.185-190
    • /
    • 2012
  • Rejection characteristics of perchlorate ($ClO_4^-$) were examined for commercially available reverse osmosis (RO) and nanofiltration (NF) membranes. A bench-scale dead-end stirred-cell filtration system was employed to determine the toxic ion rejection and the membrane flux. Model water solutions were used to prepare $ClO_4^-$ solutions (approximately, $1,000{\mu}g/L$) in the presence of background salts (NaCl, $Na_2SO_4$, and $CaCl_2$) at various pH values (3.5, 7, and 9.5) and solution ionic strengths (0.001, 0.01, and 0.01 M NaCl) in the presence of natural organic matter (NOM). Rejection by the membranes increased with increasing solution pH owing to increasingly negative membrane charge. In addition, the rejection of the target ion by the membranes increased with increasing solution ionic strength. The rejection of $ClO_4^-$ was consistently higher for the RO membrane than for the NF membrane and $ClO_4^-$ rejection followed the order $CaCl_2$ < NaCl < $Na_2SO_4$ at conditions of constant pH and ionic strength for both the RO and NF membranes. The possible influence of NOM on $ClO_4^-$ rejection by the membranes was also explored.

Gas Sensing Characteristics and Preparation of SnO2 Nano Powders (SnO2 나노 분말의 합성 및 가스 감응 특성)

  • Lee, Ji-Young;Yu, Yoon-Sic;Yu, Il
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.24 no.7
    • /
    • pp.589-593
    • /
    • 2011
  • [ $SnO_2$ ]nano powders were prepared by solution reduction method using tin chloride($SnCl_2{\cdot}2H_2O$), hydrazine($N_2H_4$) and NaOH. The $SnO_2$ thick films for gas sensors were fabricated by screen printing method on alumina substrates and annealed at $300^{\circ}C$ in air, respectively. XRD patterns of the $SnO_2$ nano powders showed the tetragonal structure with (110) dominant orientation. The particle size of $SnO_2$ nano powders at the ratio of $SnCl_2:N_2H_4$+NaOH= 1:6 was about 60 nm. The sensing characteristics were investigated by measuring the electrical resistance of each sensor in a test box. Sensitivity of $SnO_2$ gas sensor to 5 ppm $CH_4$gas and 5 ppm $CH_3CH_2CH_3$ gas was investigated for various $SnCl_2:N_2H_4$+NaOH proportion. The highest sensitivity to $CH_4$ gas and $CH_3CH_2CH_3$ gas of $SnO_2$ sensors was observed at the $SnCl_2:N_2H_4$+NaOH= 1:8 and $SnCl_2:N_2H_4$+NaOH= 1:6, respectively. Response and recovery times of $SnO_2$ gas sensors prepared by $SnCl_2:N_2H_4$+NaOH= 1:6 was about 40 s and 30 s, respectively.

A Study on the Corrosion Behavior of Fe-Ni-Cr Alloys in Molten Salts of LiCl and LiCl-${Li_2}O$ (LiCl 및 LiCl-${Li_2}O$ 용융염에서 Fe-Ni-Cr 합금의 부식거동 연구)

  • Jo, Su-Haeng;Jang, Jun-Seon;Hong, Sun-Seon;Sin, Yeong-Jun;Park, Hyeon-Su
    • Korean Journal of Materials Research
    • /
    • v.10 no.7
    • /
    • pp.471-477
    • /
    • 2000
  • Corrosion behavior of Fe-Ni-Cr alloy in molten salts of LiCl and LiCl-$Li_2O was investigated in the tempera-ture range of $650~850^{\circ}C$. In the molten salt of LiCl, and internal oxidation of Fe occurred in the KSA(Kaeri Superalloy)-1 alloy without containing Cr, while a dense protective oxide scale of $LiCrO_2$ was formed in the KSA-4, Incoloy 800H and KSA-5 alloys. In the mixed molten salt of LiCl-$Li_2O$, internal oxidation of Fe and Cr took place in the KSA-1 and KSA-4 alloys, respectively. Non-protective porous oxide scales consisting of $LiCrO_2$ and Ni were formed in the Incoloy 800H and KSA-5. The corrosion rate of the alloys increased with the increase in Cr content and the corrosion rate followed the parabolic law for the alloy containing Cr content less than 8%, and the linear law for the alloy containing Cr content more than 8%. Such a corrosion behavior of the alloy in the mixed molten salt of LiCl-$Li_2O$ was interpreted in terms of the basic fluxing mechanism of protective oxide scale of $Cr_2O_3$.

  • PDF

Effect of Coions on the Absorption of rare Earths in a Cation Exchange Resin (양이온 교환수지에 대한 희토류 원소의 흡수에 미치는 Coion의 영향)

  • Beom-Gyu Lee;In-sook Kim;Kang-Jin Kim
    • Journal of the Korean Chemical Society
    • /
    • v.27 no.1
    • /
    • pp.18-23
    • /
    • 1983
  • To understand the abnormal absorption behavior of rare earths in cation exchange resins, the absorption for Ce(III), Tb(III) and $Cl^-$ ions in Dowex 50W-X2 have been investigated by spectrophotometry in the concentration range of $1{\sim}12$ M HCI and $HCl-HClO_4$ mixed solutions. The amount of $Cl^-$ ion absorbed shows that the ratio of amount of $Cl^-$ ions to that of rare earths does not exceed 10% in the concentration range of $6{\sim}8M$ HCl and decreased gradually to 3% at 2M HCl and 6% at 12M HCl. The ratio is further decreased with the fraction of $HClO_4$ in $HCl-HClO_4$ mixed solutions and the decrease is presumably due to the weak tendency to form a complex between rare earths and $Cl^-$ ions in a cation exchange resin. The effect of $ClO_4^-$ is expected to play a more important role than that of $Cl^-$ ions in the large absorption of rare earths.

  • PDF

THE EFFECT OF OXYGEN ON PERCHLORATE REDUCTION IN A BIOFILM REACTOR

  • Choi, Hyeok-Sun
    • Environmental Engineering Research
    • /
    • v.12 no.4
    • /
    • pp.148-154
    • /
    • 2007
  • The purpose of this research was to investigate the effects of low concentration of oxygen on reduction of perchlorate, especially low perchlorate influent concentrations in a biofilm reactor, as well as the effect of flow pattern in a biofilm reactor. Dissolved oxygen averaging 1 mg/L did not inhibit reduction of influent perchlorate from 23 to $426\;{\mu}g/L$ in the biofilm reactors when sufficient acetate was added, probably due to limitation of oxygen diffusion into the biofilm. Influent perchlorate ranging from 23 to $426\;{\mu}g/L$ was reduced to below detection level ($4\;{\mu}g/L$) in the presence of 1 mg/L dissolved oxygen (DO). Chloride was produced in a ratio of $0.37gCl^-/g{ClO_4}^-$ and $0.35gCl^-/g{ClO_4}^-$ in plug flow and recirculation biofilm reactor which is similar to stoichiometric amount ($0.36gCl^-/g{ClO_4}^-$) indicating complete perchlorate reduction at $426\;{\mu}g/L$ of ${ClO_4}^-$ feeding. At $23\;{\mu}g/L$L influent perchlorate, total biomass solids were 3.18 g and 2.81 g in the plug flow and recirculation biofilm reactors. The most probable number(MPN) analysis for perchlorate-reducing bacteria showed $10^4$ to $10^5\;cells/cm^2$ in both biofilm reactors throughout the experiments. The effluent perchlorate concentrations were not significantly different in the two different flow regimes, plug flow and recirculation biofilm reactors.

The Study on the Etching Characteristics of (Ba, Sr)TiO$_3$ Film by Inductively Coupled Plasma (유도결합 플라즈마에 의한(Ba, Sr)TiO$_3$ 박막의 식각 특성 연구)

  • 김승범;이영준;염근영;김창일
    • Journal of the Korean Institute of Telematics and Electronics D
    • /
    • v.36D no.4
    • /
    • pp.56-62
    • /
    • 1999
  • In this study, (Ba, Sr)$TiO_3$ thin films were etched with $Cl_2$/Ar gas mixing ratio in an inductively coupled plasma (ICP) by varying the etching parameter such as rf power, dc bias voltage, and chamber pressure. The etch rate was 56 nm/min under $Cl_2$/($Cl_2$+Ar) gas mixing ratio of 0.2, rf power of 600 W, dc bias voltage of 250 V, and chamber pressure of 5 mTorr. At this time, the selectivity of BST to Pt, $SiO_2$ was respectively 0.52, 0.43. The surface reaction of the etched (Ba, Sr)$TiO_3$ thin films was investigated with X-ray photoelectron spectroscopy (XPS). Ba is removed by chemical reaction between Sr and Cl to remove Sr. Ti is removed by chemical reaction such as $TiCl_4$ with ease. The results of secondary ion mass spectrometer (SIMS) analysis compared with the results of XPS analysis and the results were the same.

  • PDF

Corrosion Behavior of Austenitic Alloys in the Molten Salts of $LiCl-Li_2O_2$ ($LiCl-Li_2O_2$ 용융염계에서 오스테나이트계 합금의 부식거동)

  • 오승철;윤기석;임종호;조수행;박성원
    • Proceedings of the Korean Radioactive Waste Society Conference
    • /
    • 2003.11a
    • /
    • pp.373-378
    • /
    • 2003
  • As a part of assessment of the structural material for the molten salt handling system, corrosion behavior of austenitic alloys, Fe-base and Ni-base in the molten salt of $LiCl-Li_2O_2$ was investigated in the range of temperature; 650~$725^{\circ}C$, time; 24- 168h, $Li_2O$; 3wt%, mixed gas; Ar-10%$O_2$. In the molten salt of $LiCl-Li_2O_2$, Ni-base alloys showed higher corrosion resistance than Fe-base alloys. Fe-base alloy with low Fe and high Ni contents exhibited better corrosion resistance. The scales of $Cr_2O_3$, $FeCr_2O_4$ on Fe-base alloys were showed, and $Cr_2O_3$, $NiFe_2O_4$ on Ni-base alloys were also showed.

  • PDF

Etching Characteristics of $SrBi_{2}Ta_{2}O_{9}$ Thin Film with Adding $Cl_2$ into $CF_4$/Ar Plasma ($CF_4$/Ar 플라즈마 내 $Cl_2$첨가에 의한 $SrBi_{2}Ta_{2}O_{9}$ 박막의 식각 특성)

  • 김동표;김창일;이원재;유병곤;김태형;장의구
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.14 no.9
    • /
    • pp.714-719
    • /
    • 2001
  • SrBi$_2$Ta$_2$$O_{9}$ thn films were etched in inductively coupled Cl$_2$/CF$_4$/Ar plasma. THe maximum etch rate was 1060 $\AA$/min at a Cl$_2$/(Cl$_2$+CF$_4$+Ar)=0.2. The 20% additive Cl$_2$ into CF$_4$/Ar plasma decreased carbon and fluorine radicals, but increased Cl radicals. Sr was effectively removed by reacting with Cl radical because the boiling point of SrCl$_2$(125$0^{\circ}C$) is lower than that of SrF$_2$(246$0^{\circ}C$). The chemical reactions on the etched surface were studied with x-ray photoelectron spectroscopy and secondary ion mass spectrometry. The etching profile was evaluated by using scanning electron microscopy.y.

  • PDF

Effect of an Aqueous Chlorine Dioxide Generator and Effect on Disinfection of Fresh Fruits and Vegetables by Immersion Washing (이산화염소수 생성기의 생성효율 및 과.채류에 대한 침지 세정 살균효과)

  • Park, Kee-Jai;Jeong, Jin-Woong;Lim, Jeong-Ho;Jang, Jae-Hee;Park, Hee-Joo
    • Food Science and Preservation
    • /
    • v.15 no.2
    • /
    • pp.236-242
    • /
    • 2008
  • We investigated the optimum concentration of a $NaClO_2$ solution and the amount of gaseous $Cl_2$ for production of high yield and purity of aqueous $ClO_2$ by use of a gaseous chlorine-chlorite $ClO_2$ generator. This system produced lower concentrations of chlorine dioxide and is applicable for direct-use in food processing as a cleaner and sanitizer. The concentration of $NaClO_2$ solution and the amount of gaseous $Cl_2$ was varied from 0.01-0.1% and 100-1,000 g/hr, respectively. The concentrations of chlorite, chlorate, FAC (free available chlorine), and chlorine dioxide that were produced increased with increasing concentration of $NaClO_2$ solution and with the amount of gaseous $Cl_2$. The optimum concentration of $NaClO_2$ solution and amount of gaseous $Cl_2$ were 0.1% and 900 g/hr respectively. $ClO_2$ and FAC produced at these concentrations were 882.0 ppm and 8.0 ppm, with no detection of chlorite and chlorate. The yield and purity of $ClO_2$ were 97.0% and 96.0% respectively. Immersion-cleaning experiments showed that this protocol decreased the level of CFU/g by $10^3$- to $10^4$-fold, with a similar effect on fruit.