• Title/Summary/Keyword: Circular section

Search Result 635, Processing Time 0.028 seconds

An Analytical Study on the Deformation Behavior of the Reinforced Concrete Circular Section Column under Bi-Axial Bending Moment and Axial Force (2축휨가 축력을 받는 철근콘크리트 원형단면주의 변형성상에 관한 해석적연구)

  • 정호길
    • Proceedings of the Earthquake Engineering Society of Korea Conference
    • /
    • 1997.04a
    • /
    • pp.163-172
    • /
    • 1997
  • This paper is a study on the deformation behavior of the reinforced concrete circular section column carrying bi-axial bending moment and axial force. That is, this is to clarify the deformation behavior of the reinforced concrete circular section column carrying bi-axial bending moment and axial force by analytic methods. The deformation behavior of circular section column under bi-axial uni-axial bending moment and axial force are compare with those of a square section column under the same conditions. Those of circular section column under bi-axial bending moment are decreased as compared with those of circular section column under uni-axial bending moment. The results mentioned above are the same under the axial force of 7tons and 11tons.

  • PDF

Shape Optimization of the Cross Section for a Non-circular Spring Wire of Valve Springs for an Automotive Engine (자동차 엔진 밸브 스프링에 사용되는 비원형 스프링 선의 단면 형상 최적화)

  • Kim, Do-Joong;Kim, Young-Kyung
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.19 no.2
    • /
    • pp.117-124
    • /
    • 2011
  • Valve springs with non-circular cross-section are widely used in automotive engines. Because of the reduced height, the oval cross-section provides some merits in its install height and stress distribution. This paper introduces a new method to generate optimal shape of the non-circular cross-section. For given width and height, arbitrary shape of the cross-section are described using the Hermite spline curves. Cross-section area and maximum stress level are chosen as performance indices, and nonlinear optimization problems are formulated with inequality constraints. Compared to a production spring wire, cross-section area can be reduced about 2.4 [%] without increasing maximum stress level. In addition, the other approach gives an optimum cross-section which reduces maximum stress level of 2.0 [%] without increasing cross-section area.

Torsion of circular open cross-section with corrugated inner and outer surface

  • Pala, Yasar;Pala, Abdullah
    • Structural Engineering and Mechanics
    • /
    • v.73 no.1
    • /
    • pp.75-82
    • /
    • 2020
  • In this study, the problem of torsion of bars with open cross section surrounded by corrugated boundaries is analyzed. An approximate analytical solution is given using perturbation technique. First, the stress analysis for circular open cross-section for arbitrary opening angle is formulated and the problem is analytically solved. Second, the open cross-section with corrugated cross section is analyzed using perturbation method. First order contributions to the stresses and the torques have been added. The results have been exemplified and compared by considering special examples.

Investigation of cold-formed stainless steel non-slender circular hollow section columns

  • Ellobody, Ehab;Young, Ben
    • Steel and Composite Structures
    • /
    • v.7 no.4
    • /
    • pp.321-337
    • /
    • 2007
  • The investigation on the behaviour of cold-formed stainless steel non-slender circular hollow section columns is presented in this paper. The normal strength austenitic stainless steel type 304 and the high strength duplex materials (austenitic-ferritic approximately equivalent to EN 1.4462 and UNS S31803) were considered in this study. The finite element method has been used to carry out the investigation. The columns were compressed between fixed ends at different column lengths. The geometric and material nonlinearities have been included in the finite element analysis. The column strengths and failure modes were predicted. An extensive parametric study was carried out to study the effects of normal and high strength materials on cold-formed stainless steel non-slender circular hollow section columns. The column strengths predicted from the finite element analysis were compared with the design strengths calculated using the American Specification, Australian/New Zealand Standard and European Code for cold-formed stainless steel structures. The numerical results showed that the design rules specified in the American, Australian/New Zealand and European specifications are generally unconservative for the cold-formed stainless steel non-slender circular hollow section columns of normal and high strength materials, except for the short columns and some of the high strength stainless steel columns. Therefore, different values of the imperfection factor and limiting slenderness in the European Code design rules were proposed for cold-formed stainless steel non-slender circular hollow section columns.

Three-dimensional Vibration Analysis of Circular Rings with an Elliptical or Circular Cross-section (타원형 또는 원형 단면을 가진 원형 링의 3차원적 진동해석)

  • Shim, Hyun-Ju;Woo, Ha-Young;Kang, Jae-Hoon
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.16 no.10 s.115
    • /
    • pp.1024-1035
    • /
    • 2006
  • A three-dimensional (3-D) method of analysis is presented for determining the free vibration frequencies and mode shapes of thick, complete (circumferentially closed), circular rings with an elliptical or circular cross-section. Displacement components $u_r,\;u_\theta\;and\;u_z$ in the radial, circumferential, and axial directions, respectively, are taken to be periodic in ${\theta}$ and in time, and algebraic polynomials in the r and z directions. Potential (strain) and kinetic energies of the circular rings are formulated, and upper bound values of the frequencies are obtained by minimizing the frequencies. As the degree of the polynomials is increased, frequencies converge to the exact values. Convergence to four-digit exactitude is demonstrated for the first five frequencies of the rings. Novel numerical results are presented for the circular rings having an elliptical cross-section based upon 3-D theory. Comparisons are also made between the frequencies from the present 3-D Ritz method and ones obtained from thin and thick ring theories, experiments, and another 3-D method.

The Physical Properties and Performance of Products for Eyelash Monofilaments (속눈썹용 원사의 물리적 성질 및 제품성능)

  • Son, Eun Jong;Ahn, Jae Sang;Yoon, Hye Jun;Shin, Hee Young
    • Textile Coloration and Finishing
    • /
    • v.34 no.4
    • /
    • pp.272-283
    • /
    • 2022
  • In this study, the flat-section monofilaments of PBT for artificial eyelashes was developed, and the physical properties of the circular cross-section of artificial eyelashes were compared and observed, and the main performance of the artificial eyelash prototype was observed through processing for artificial eyelashes. In addition, a satisfaction survey of the prototype was conducted through a survey of consumers and artificial eyelash operators. It was found that the bending stiffness value of the monofilaments increased significantly as the thickness increased. As a result of measuring the bending properties of the flat-section PBT monofilaments, the bending stiffness was significantly lower than that of the circular-section PBT specimens of the same thickness. The deformed cross-section PBT monofilaments with flat cross sections developed in this study showed a light weight factor of less than 50% compared to the existing circular cross-section PBT ones. The adhesive strength of the developed PBT artificial specimens was greater than that of the existing circular cross-section yarn. It was also observed that the curl stability over time was excellent. As a result of the consumer survey, it was possible to obtain more than 85% of positive answers in the case of consumer subjects, and it was possible to investigate that the satisfaction of the operator subjects was more than 80% compared to the existing round-section eyelashes.

Fiber Orientation Factor on a Circular Cross-Section in Concrete Members (콘크리트 원형단면에서의 섬유분포계수)

  • Lee, Seong-Cheol;Oh, Jeong-Hwan;Cho, Jae-Yeol
    • Journal of the Korea Concrete Institute
    • /
    • v.26 no.3
    • /
    • pp.307-313
    • /
    • 2014
  • In order to predict the post-cracking tensile behavior of fiber reinforced concrete, it is necessary to evaluate the fiber orientation factor which indicates the number of fibers bridging a crack. For investigation of fiber orientation factor on a circular cross-section, in this paper, cylindrical steel fiber reinforced concrete specimens were casted with the variables of concrete compressive strength, circular cross-section size, fiber type, and fiber volumetric ratio. The specimens were cut perpendicularly to the casting direction so that the fiber orientation factor could be evaluated through counting the number of fibers on the circular cross-section. From the test results, it was investigated that the fiber orientation factor on a circular cross-section was lower than 0.5 generally adopted, as fibers tended to be perpendicular to the casting direction. In addition, it was observed that the fiber orientation factor decreased with an increase of the number of fibers per unit cross-section area. For rational prediction of the fiber orientation factor on a circular section, a rigorous model and a simplified equation were derived through taking account of a possible fiber inclination angle considering the circular boundary surface. From the comparison of the measured data and the predicted values, it was found that the fiber orientation factor was well predicted by the proposed model. The test results and the proposed model can be useful for researches on structural behavior of steel fiber reinforced columns with a circular cross-section.

Effect of the shape of the micro punching on the stacked antennas characteristics (미세 펀칭 형상이 적층형 안테나 특성에 미치는 영향)

  • Hong, J.P.;Han, J.N.;Chung, H.W.;Yoon, S.M.
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 2007.05a
    • /
    • pp.71-74
    • /
    • 2007
  • Substitution of the stacked antenna for the normally pressed antenna in the mobile phone was tried for the purpose of decreasing its size. However, reduced size resulted in the difficulties obtaining the targeted characteristics with the bandwidth over 70MHz. The cross-section of the vias in the low temperature co-firing ceramics process was studied to find out effects on the bandwidth characteristics. Circular and rectangular cross-section of the via beneath different types of antenna patterns were simulated. Better bandwidth characteristics were acquired for the larger diameter of the circular section and for the rectangular section as the cross-section area increased. From the viewpoint of the shape of the cross-section, rectangular area showed better characteristics than the circular area with the same longest length in the cross-section.

  • PDF

A Buckling Characteristics of Single-Layer Lattice Domes according to Section Shapes of Main Frames (The Existing Domestically-Produced Structural Steel is used as Main Frames) (단층래티스 돔의 주부재 단면형상에 따른 좌굴특성 검토 (KS규격 기성 강재 사용을 기준으로 함))

  • Jung, Hwan-Mok
    • Journal of Korean Association for Spatial Structures
    • /
    • v.13 no.4
    • /
    • pp.75-81
    • /
    • 2013
  • The circular hollow section is usually used for member of main frame to carry the external load in single layer lattice dome. But, the H-shaped section may be used for member of main frame since it is convenient for attaching roof panels. Single layer lattice domes have various buckling characteristics, such as the overall buckling, the member buckling, and nodal buckling. The purpose of this study is to compare buckling characteristics of single-layer lattice domes in which the H-shaped steel section as the existing domestically-produced structural steel is used as main frames to those of domes in which a circular hollow section is used as main frames.

Vibration Analysis for Circular Arches with Variable Cross-section by using Differential Transformation and Generalized Differential Quadrature (미분변환법과 일반화 미분구적법을 이용한 가변단면 원호 아치의 진동 해석)

  • Shin, Young Jae;Kwon, Kyung Mun;Yun, Jong Hak;Yoo, Yeong Chan;Lee, Ju Hyung
    • Journal of Korean Society of Steel Construction
    • /
    • v.16 no.1 s.68
    • /
    • pp.81-89
    • /
    • 2004
  • The vibration analysis of the circular arch as a member of a structure has been an important subject of mechanics due to its various applications to many industrial fields. In particular, circular arches with variable cross section are widely used to optimize the distribution of weight and strength and to satisfy special architectural and functional requirements. The Generalized Differential Quadrature Method (GDQM) and Differential Transformation Method (DTM) were recently proposed by Shu and Zou, respectively. In this study, GDQM and DTM were applied to the vibration analysis of circular arches with variable cross section. The governing equations of motion for circular arches with variable cross section were derived. The concepts of Differential Transformation and Generalized Differential Quadrature were briefly introduced. The non-dimensionless natural frequencies of circular arches with variable cross section were obtained for various boundary conditions. The results obtained using these methods were compared with those of previous works. GDQM and DTM showed fast convergence, accuracy, efficiency, and validity in solving the vibration problem of circular arches with variable cross section.