• 제목/요약/키워드: Circular motion

Search Result 437, Processing Time 0.026 seconds

A Study on the Measurement of Motion Accuracy for Feed Drive System of Multi-task Machine Tool (복합공작기계의 이송계 운동정밀도 측정의 연구)

  • Ko, Hai-Ju;Jung, Yoon-Gyo
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.6 no.3
    • /
    • pp.112-118
    • /
    • 2007
  • Recently, the machine tools called multi-task machines, which mounted rotary axes on the table or spindle are used increasingly. Accordingly, multi-task machine tool takes a growing interest on the motion accuracy of feed drive system. In this study, measurement and diagnosis of motion errors ware attempted from circular pattern obtained by using DBB (Double ball bar) device. Those were obtained at both clockwise and counter clockwise motions in mutually perpendicularly intersecting three planes. The reliability of error measurement system for multi-task machine tool was verified by the direct test cutting.

  • PDF

A Study on the Measurement of Motion Accuracy for Feed Drive System of Multi-task Machine Tool (복합공작기계의 이송계 운동정밀도 측정의 연구)

  • Ko, Hai-Ju;Jung, Yoon-Gyo
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.6 no.3
    • /
    • pp.31-37
    • /
    • 2007
  • Recently, the machine tools called multi-task machines, which mounted rotary axes on the table or spindle are used increasingly. Accordingly, multi-task machine tool takes a growing interest on the motion accuracy of feed drive system. In this study, measurement and diagnosis of motion errors ware attempted from circular pattern obtained by using DBB (Double ball bar) device. Those were obtained at both clockwise and counter clockwise motions in mutually perpendicularly intersecting three planes. The reliability of error measurement system for multi-task machine tool was verified by the direct test cutting.

  • PDF

Shaking Motion Characteristics of a Cod-end Caused by an Attached Circular Canvas during Tank Experiments and Sea Trials

  • Kim, Yonghae
    • Fisheries and Aquatic Sciences
    • /
    • v.16 no.3
    • /
    • pp.211-220
    • /
    • 2013
  • A shaking motion could be used to improve fish escapement from a cod-end net by creating a sieving effect over the swept volume or by disturbing the optomotor response of the fish. In this study, a perpendicular shaking motion was generated in a towed cod-end net by a circular canvas attached to the end of the codend, which formed a biased cap-like shape. This concept was tested by using a model in a flow tank and by towing a prototype cod-end during sea trials. For the model tests, the amplitude of the shaking motion was $0.6{\pm}0.1$ times the rear diameter of the cod-end, and the period of the shaking motion was $2.6{\pm}0.1$ s at a flow velocity of 0.6 or 0.8 m/s. In the sea trials, the amplitude was $0.5{\pm}0.2$ times the rear diameter of the cod-end, and the period of the shaking motion was $7{\pm}4$ s at towing speeds of 1.2 or 1.7 m/s. Thus, the shaking amplitude during the sea trials was equal to or less than that observed in the tank tests, and the shaking period was twice as long. The shaking motion described by the amplitude and period could be an effective means to stimulate fish escapement from cod-end during fishing operations considering the response of the fish.

Low thrust inclined circular trajectories for airplanes

  • Labonte, Gilles
    • Advances in aircraft and spacecraft science
    • /
    • v.4 no.3
    • /
    • pp.237-267
    • /
    • 2017
  • Automatic trajectory re-planning is an integral part of unmanned aerial vehicle mission planning. In order to be able to perform this task, it is necessary to dispose of formulas or tables to assess the flyability of various typical flight segments. Notwithstanding their importance, there exist such data only for some particularly simple segments such as rectilinear and circular sub-trajectories. This article presents an analysis of a new, very efficient, way for an airplane to fly on an inclined circular trajectory. When it flies this way, the only thrust required is that which cancels the drag. It is shown that, then, much more inclined trajectories are possible than when they fly at constant speed. The corresponding equations of motion are solved exactly for the position, the speed, the load factor, the bank angle, the lift coefficient and the thrust and power required for the motion. The results obtained apply to both types of airplanes: those with internal combustion engines and propellers, and those with jet engines. Conditions on the trajectory parameters are derived, which guarantee its flyability according to the dynamical properties of a given airplane. An analytical procedure is described that ensures that all these conditions are satisfied, and which can serve for producing tables from which the trajectory flyability can be read. Sample calculations are shown for the Cessna 182, a Silver Fox like unmanned aerial vehicle, and an F-16 jet airplane.

Design of Prediction Unit for H.264 decoder (H.264 복호기를 위한 효율적인 예측 연산기 설계)

  • Lee, Chan-Ho
    • Journal of the Institute of Electronics Engineers of Korea SD
    • /
    • v.46 no.7
    • /
    • pp.47-52
    • /
    • 2009
  • H.264 video coding standard is widely used due to the high compression rate and quality. The motion compensation is the most time-consuming and complex unit in the H.264 decoder. The performance of the motion compensation is determined by the calculation of pixel interpolation and management of the reference pixels. The reference pixels read from external memory using efficient memory management for data reuse is necessary along with the high performance interpolators. We propose the architecture of a motion compensation unit for H.264 decoders. It is composed of 2-dimensional circular register files, a motion vector predictor and high performance interpolators with low complexity. The 2-dimensional circular register files reuse reference pixel data as much as possible, and feed reference pixel data to interpolators without any latency and complex logic circuits. We design a motion compensation unit and a intra-prediction unit and integrate them into a prediction unit and verify the operation and the performance.

Numerical analysis of two and three dimensional buoyancy driven water-exit of a circular cylinder

  • Moshari, Shahab;Nikseresht, Amir Hossein;Mehryar, Reza
    • International Journal of Naval Architecture and Ocean Engineering
    • /
    • v.6 no.2
    • /
    • pp.219-235
    • /
    • 2014
  • With the development of the technology of underwater moving bodies, the need for developing the knowledge of surface effect interaction of free surface and underwater moving bodies is increased. Hence, the two-phase flow is a subject which is interesting for many researchers all around the world. In this paper, the non-linear free surface deformations which occur during the water-exit of a circular cylinder due to its buoyancy are solved using finite volume discretization based code, and using Volume of Fluid (VOF) scheme for solving two phase flow. Dynamic mesh model is used to simulate dynamic motion of the cylinder. In addition, the effect of cylinder mass in presence of an external force is studied. Moreover, the oblique exit and entry of a circular cylinder with two exit angles is simulated. At last, water-exit of a circular cylinder in six degrees of freedom is simulated in 3D using parallel processing. The simulation errors of present work (using VOF method) for maximum velocity and height of a circular cylinder are less than the corresponding errors of level set method reported by previous researchers. Oblique exit shows interesting results; formation of waves caused by exit of the cylinder, wave motion in horizontal direction and the air trapped between the waves are observable. In 3D simulation the visualization of water motion on the top surface of the cylinder and the free surface breaking on the front and back faces of the 3D cylinder at the exit phase are observed which cannot be seen in 2D simulation. Comparing the results, 3D simulation shows better agreement with experimental data, specially in the maximum height position of the cylinder.

Hydrodynamic Forces Characteristics of a Circular Cylinder with a Damping Plate (감쇠판이 부착된 원기둥의 동유체력 특성)

  • Cho, Il-Hyoung
    • Journal of Ocean Engineering and Technology
    • /
    • v.25 no.1
    • /
    • pp.1-7
    • /
    • 2011
  • The radiation of water waves by a heaving truncated circular cylinder with damping plate is solved in the frame of the three-dimensional linear potential theory. The damping plate has a distinct advantage in reducing the motion response of a floating circular cylinder by increasing the added mass and the damping coefficient. Using the matched eigenfunction expansion method, the characteristics of hydrodynamic added mass and the damping coefficient are investigated with various system parameters, such as the radius and submergence depth of the damping plate. It is found that both added mass and the damping coefficient are significantly increased due to the arranged features of the larger damping plate with shallow submergence, which are positive factors as a motion reduction device of the floating offshore platform. Also the numerical results for an oscillating submerged disk show that the added mass is negative and that the damping coefficient has a peak value at resonant frequency when submergence depth is sufficiently small.

Circular interpolation error reduction of a CNC machining center by iterative learning (반복학습에 의한 CNC 머시닝 센터의 원호 보간 오차 보정)

  • 최종호;유경열;장태정
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1993.10a
    • /
    • pp.830-835
    • /
    • 1993
  • The errors in machining process by CNC machining center are due to many elements, such as the delay of the servo drivers, friction and the gain mismatch between x-axis and y-axis motors and so on. We made a counter circuit to measure the output of motor encoders for the motion error analysis of a CNC machining center, and have measured the errors experimentally when the CNC performs a circular interpolation. We have also used an iterative learning method to reduce the radius errors and stick motion errors generated by the CNC machining center performing a circular interpolation. The proposed learning scheme worked well and the circle obtained has smaller error.

  • PDF

A method to analyze the flyability of airplane trajectories with specified engine power

  • Gilles Labonte;Vincent Roberge;Mohammed Tarbouchi
    • Advances in aircraft and spacecraft science
    • /
    • v.10 no.5
    • /
    • pp.473-494
    • /
    • 2023
  • This article introduces a formalism for the analysis of airplane trajectories on which the motion is determined by specifying the power of the engines. It explains a procedure to solve the equations of motion to obtain the value of the relevant flight parameters. It then enumerates the constraints that the dynamical abilities of the airplane impose on the amount of fuel used, the speed, the load factor, the lift coefficient, the positivity and upper boundedness of the power available. Examples of analysis are provided to illustrate the method proposed, with rectilinear and circular trajectories. Two very different types of airplanes are used in the examples: a Silver Fox-like small UAV and a common Cessna 182 Skylane.