Bull. Korean Math. Soc. 39 (2002), No. 1, pp. 97-111

POLYGON SHORTENING MAKES
(MOST) QUADRILATERALS CIRCULAR

THIERRY JECKO AND JEAN-CHRISTOPHE LEGER

ABSTRACT. We show that an analog of the Gage-Grayson-Hamilton
Theorem for curves moving according to their mean curvature holds
for the motion of quadrilaterals according to their Menger curva-
ture.

1. Introduction

The Gage-Grayson-Hamilton Theorem ([1], [2], and [3]) states that
if C%:8' — Cis a C? Jordan curve in the plane then there exists a
family C : S* x [0,7*[— C of smooth Jordan curves in the plane such
that C(-,0) = CY(-), C(,t) tends to a constant function as t — T and
(1) @ = 62_0

ot 0s?’
Moreover, if we rescale the curves so that the enclosed areas are equal to
m, we have that the rescaled curves tend (for example in the Hausdorff
sense) to a circle of radius 1.

Notice that the right hand side of equation (1) is the curvature vector
of the curve C(¢) (s is the arc-length parameter on the curve C(t): it is
not independent with the variable #). A family of curves C depending on
time ¢ satisfying equation (1) is said to be moving by its mean curvature.

A question (among others) this theorem raises is whether one can find
a discrete version of the motion by mean curvature which preserves this
theorem: this should be a test for a measuring how good a discretization
process for this motion is.

In this short note, we shall present a proposition for a possible good
discretization and show that at least for quadrilaterals an analog of the
Gage-Grayson-Hamilton Theorem exists.
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For an ordered triple (z,¥, z) of distinct points in C, let us call the

Menger curvature of the triple the number
T—Yy z—Y 1
(2) C(xayaz)—<x_y ﬂ)x_z'

This quantity will be our analog for polygons of the usual curvature
for smooth curves. Observe that this is a natural quantity to have a look
at. The fact is that ¢(z,y, 2) is zero if and only if the points z, y and z
are colinear, |c(x,y, z)| is the inverse of the radius of the circumecircle of
the triangle zyz and y + ﬁf is the center of that circumcircle. Observe
as well that this quantity has already been used for finding discrete
analogs of well known curvature related theorems for Jordan curves (see
for instance the introduction of [5] and the references therein for a variant
of the four-vertex Theorem). Another beautiful use of it is related to
boundedness properties of singular integral operators on subsets of C
([4] for instance).

For an integer n > 3 let us call a n-gon a map y : Z/nZ — C such
that, for all ¢ € Z/nZ, the points y;_1,yi, ¥s+1 are distinct and let us
define its Menger curvature ¢ by

(8) G = c(Yi—1,Yis Yiv1) Vi € Z/nZ.
Remark that we have
(4) Z (yi-1 — yi+1)ei = 0.
i€Z/n

For an interval I C R, we will say that the family of n-gons v :
Z/nZ x I — C is moving by its Menger curvature if it satisfies the
following differential system

’ dyi
Y; = dt

This kind of motion shares many common features with the classical
motion by mean curvature, the first being that it preserves the shape of
polygons which are cocyclical or colinear (i.e., the vertices lie on a single
circle or a single line).

Another common property is the one of length shrinking. For an
n-gon y, put its length L = ZiEZ/nZ |yiv1 — yi]. We have then, for a
family y(t) of n-gons moving by their Menger curvature that L(t) is a
nonincreasing function (Lemma 1). Moreover, we have

c; LT ) 2
(6) L'=- > H—Jﬂl—hﬁﬂ - il
I€Z/nZ

(5) Vi € Z/nZ,

= c(Yi-1, Vi, Yi+1) = Ci.
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a formula which should be compared with formula (5) in [1] used for the
usual motion by mean curvature.

In this note we will be interested in the case n = 4, that is the
motion of quadrilaterals (4-gons). In this case, as was already noted
for general n’s, cocyclical polygons keep their shapes. It turns out that
parallelograms keep their shapes in the motion as well.

Here is now a rough idea of the main result (¢f. Theorem 1 and
Proposition 2) of this note. If we are given an initial quadrilateral, the
Cauchy-Lipschitz Theorem ensures the short-time existence and unique-
ness of a family of quadrilaterals evolving by their Menger curvature and
starting with this quadrilateral.

It turns out that for “most” starting quadrilaterals, the maximal in-
terval of existence [0, T*[ is bounded and, as ¢ — T*, the family collapses
to a point whereas the limiting shape is a cocyclical quadrilateral.

We would like to stress on the fact that given a quadrilateral to start
with, we have a simple test (see section 4) to see if the limiting shape
in the evolution is cocyclical: we do not put any restrictions (such as
convexity or no self-crossing) on the type of quadrilaterals we are looking
at. The evolution in the singular cases is also described: the limiting
shape is then a parallelogram or a colinear quadrilateral.

In the general situation (n > 4), we are able to show that, if n # 0
modulo 4, the only invariant shapes are the cocyclical or colinear ones
whereas, if n = 0 modulo 4, there is another invariant shape, namely a
parallelogram described n/4 times (see Proposition 1).

Open Problems: We do not know what happens in the case n > 4,
except the previous description of invariant shapes, and this may be an
interesting subject of further investigation.

Another path of investigation is to find out if the motion of polygons
by Menger curvature really approximates the usual motion of curves by
curvature and if so, in which sense.

2. General facts and first result

In this section, y : Z/nZ x I — C will be a family of n-gons evolving
by their Menger curvature. We collect some general facts about such a
family. Most proofs are elementary computations.
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Lemma 1. (i) For any triple (u,v,w) of distinct points in C, we
have
9Re (c(u, v, w)(u — v)) = Je(u, v, w)[2|u — 2.
(i) For alli € Z/nZ, allt € I,

dlyi+1 — Yil leil? + |eiyal?
dr = 5 IyH—l yzl‘

In particular, (6) holds true.
(i) If n is even, there exist some constant by > 0 such that for all
tel,

ly1 — vollys — yal -+ [yn—1 — Yn] = bolyn — v1lly2 — 3| - - |yn—2 — Yn—1l-

Proof. For (i), we have, as v + ﬁ; is the center of the circle passing
through u, v and w of radius 1/|c|, that
c 2 1
“iopl =
It remains to expand the above formula to get (i).
For (i), it is enough to compute the derivative of |y; 11 — v:|* and

apply (i) to the triples (yi—1, s, ¥i+1) and (¥, Yit1, Yit2)-
Finally, (iii) follows from

u—-v

1 d
—5 ‘e;z leil* = Elnlzﬂ —yollys — v4l* [Yn—1 — Ynl
7 T2
L Z lail? = “Cilnlyn_yln?JZ“ySl'“|’Un—2—yn~—1|- O
2 T dt k
2 .

It is straightforward to prove the

LeMMA 2. (i) If at time to € I, y(to) is a polygon whose vertices
lie on a single line, then for all t € I, y(t) = y(to).

(ii) If at time tg € I, y(tg) is & polygon whose vertices lie on a single
circle with center z¢ and radius Ry then for all t € I, for all
i€ ZL/nZ,

RO - Q(t — to) (
Ry

Lemma 2 gives two invariant shapes under the evolution. Is there

some other invariant shape? The following proposition answers this
question.

yi(t) = xo + yi(to) — xo)-
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PROPOSITION 1. Assume that the shape of y(tg) is preserved un-
der the evolution, that is, there are two complex-valued, differentiable
functions defined on I, a and b, ¢ being non-vanishing, such that

vtel, Yi€Z/nZ, yi(t)=alt)yto) +b(t),
then,

(1) y(tp) is a colinear or cocyclical polygon,

(ii) or n = 0 modulo 4, y;4.4 = y; for all i € Z/nZ, and y1,y2,Y3, Ya
form a parallelogram i.e., y1 — Y2 = Y4 — ¥3.

Proof. Since the shape is preserved,

4 |yis1 —yil

dt [yi+a — Yival

Using Lemma 1, (ii), we get |civ2(t)] = |ci(t)|. Now, using (2) and (5),
we obtain, for any i € Z/nZ,

0 =

ai(r) = S wilto) + 5 () and cilte) = a(Ds(r),

so that, for any ¢ € Z/nZ,
db

cilta) = a(t) T (Owilto) +a(t) 2 ()

From now on, we consider only the quadrilateral y(ty) so we drop the
reference to the time tg.

If @ is constant, the ¢;’s are equal. Assume they are nonzero. Denote
the centers of the circumcircles by z; := y; +¢;/|c;|?. Thus the (z; —y;)’s
are equal. Since ;11 lies on the circle centered on 2; containing y; and y;
lies on the circle centered on z;11 containing y;41, this implies y; = 1541,
which is excluded. Therefore the ¢;’s are equal to 0, which means that
the y;’s lie on the same line.

If a is not constant, each y; is the image of ¢; by some i-independent
similitude
(7) Vi e Z/RZ, 1y = ag; + 3

for some complex numbers o # 0 and 3. Let us denote by o (resp. r1)
the common modulus of the co;’s (resp. co;41°s). If ro = r1 then ry > 0
and (7) shows that the y;’s lie on the same circle. Assume rq # ;. This
implies that n is even.

From (7) and (i) in Lemma 1, we derive that, for all ¢ € Z/nZ,

(8) 2Re(czia(cait1 — cz)) = |e*rglcziss — cail®
(9) 2Re(czir10(ca — coir1)) = |al*relcaipt — ozl
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On one hand, the sum (8)+(9) leads to

(10) —2Re(a) = (12 + r¥)|of?
and on the other hand, the difference gives, thanks to (10),
(11) 2sin(6) sin(fa;) = (12 — r3)|a cos(fy;),

where a = |a|exp(if) and 0; €] — ;7] denotes a measure of the oriented
angle (¢;, 0, ¢;41). In the same way for the points cy; and cg;_1, we obtain

(12) 2sin(9) sin(—fzi—1) = (r§ — r{)|a| cos(—2i1).

Since Yai—1 75 Y2i+1, C2i—1 7'é €241 by (7) and 62i 75 —927;._1 because
le2i—1| = [cgi+1|. The equations (11) and (12) say that #y; and —8_1
satisfy an i-independent equation, which solutions are equal modulo
n. This yields that cp;_; and cp41 are symmetric w.r.t. the origin.
Similarly ¢p; and ¢p;49 are also symmetric w.r.t. the origin. Therefore
the 0;’s (resp. 6;,_1's) are equal. This means that the quadrilaterals
(c2i-1, €21, €2i41, C2i+2) form the same parallelogram. This is possible
only for n = 0 modulo 4. Using (7) again, we get the result. ]

3. Specific facts for quadrilaterals

We now specialize to the case of quadrilaterals or 4-gons (i.e., n = 4).

LEMMA 3. (i) There exists a constant A € C* such that for all

tel, yy—y2=Ays — y1)-
(i) There exists a constant by > 0 such that for all t € I,

ly1 — vallys — val = bolyr — vallys — val-

Proof. For (i), we just observe that (5) and (4) imply that
Y1 (ys — y2) + ¥5(y1 — 3) + ¥5(yz — va) + ¥4(yz — 1) =0

so that (y3 — y1)(ya — y2)" — (Us — v1) (ya — y2) = 0.
(ii) is just a rewriting of (iii) of Lemma 1. O

Among the invariant shapes (Proposition 1), we have already de-
scribed the evolution of two of them in the general case (see Lemma 2).
Before treating the third one for n = 4, we want to stress on the fact
that the following lemma also gives the evolution of the periodic paral-
lelogram (i.e., the form (ii) in Proposition 1) in the general case.
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LEMMA 4. If for tg € 1, y(to) is a nonflat parallelogram with center
xo then for any t € I, y(t) is a similar parallelogram with center xo given

by

n(t) = zo+ A~ t0)/2,
(13) y3(t) = xo— At —19)/2,
ys(t) = o+ ANt —10)/2,
ya(t) = z0— ANt —10)/2.

Here, we have put

A=2"Bhry g (-11)

Ys — Y1
and
oy, [AO)P —at ~iZm Bt
A(t) = A(0) NOR e ;
where
g MmAP(ARLY o (ImA)(ReA) (AP - 1)

O APJA 1A - 1P O ARlAFIPIA =12
Proof. Because of the uniqueness in the Cauchy-Lipschitz Theorem, it
suffices to check that (13) is a solution of the differential system (5). [

What ought to be said about this formula is that a nonflat parallelo-
gram such that |A| # 1 (that is, not a rectangle) evolving according to
its Menger curvature shrinks to its center in finite time and that, while
shrinking, it rotates more and more rapidly around that point. This is
a very strong contrast with the evolution of a cocyclical quadrilateral
which shrinks to the center of the circle in finite time but does not rotate
at all.

As we are interested in the property of being cocyclical, it is natural
to introduce the cross-ratio of a quadrilateral z. It is defined by

_ (m = 2z2)(23 — 2)
(14) B = o T —

The quantity B, cannot be 0 or 1 because we supposed that the points
z; are distinct. It is well known that the quadrilateral z is cocyclical or
colinear if and only if B, is a real number. An important feature of B,
is that it is a scale and rotation invariant quantity: this is the quantity
we will use to characterize cocyclical shapes.
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What is lesser known, although easy, is the following scale and rota-
tion invariant characterization of parallelograms in terms of A, = £=2
and B,: z is a parallelogram if and only if

A, —1\2
(15) B, = (Az+1> .

This is due to the following relation

16) (4 20) — (2 29)) " = 222

((Az 12— By(A, + 1)2).

Recall that A = A, is constant during the motion and that B(t) =
By is such that |B(t)] = by is constant as well (see Lemma 3). The
next lemma states that we know quite precisely how B moves on the
circle with center 0 and radius bg.

LEMMA 5. (i) B satisfies the following differential equation

;w2 +ya) — (n +3)]° =
(17) B = ly2 — y11?|ys — y3|? B(B - B).

(ii) Unless we are looking at the evolution of a fawnily of parallelo-
grams or of cocyclical or colinear quadrilaterals, Re% is a decreas-
ing function and unless we are looking at the evolution of a family
of cocyclical or colinear quadrilaterals, ImB is of constant sign.

(iii) Put, for a fixedtp € I and allt € I,

P ly2 + ya) — (y1 + y3)|?

18 dr.
1s) o |y2— y1l?lys = ysl?
Then there exists a constant C such that for all t € I,
1 — Cetood(®)
(19) ReB(t) = by~

1+ Cetbod®

Proof. Equation (17) is a straightforward computation. Notice first
that for any i € Z/4Z,

0B = (=1 Yitl — Yi-1
Oy; Wir1 — vi) (Wie1 — )

?
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so that,

B, = Z Ci?

i€Z/4AZ, Yi
I€Z/AZ (yir1 — ¥i) (Wi-1 ~ %1)
: )
(Yir1 — ¥i) (Yi-1 — ¥i1)

_ ZiIm[ 1 (?9/2“91_'92_%.)_[_
|y2—yll2 Ya—Y1  Y2— U3

L1 <y4—y3_y4—-y3>]3
Iy4—y3|2 Yo—Y3 Ya— U1

_ zﬂm[ 1 (yz—yaB_y4—y1§)+
ly2 — 1% \ya — u3 Ya — U3

1 (y“_le—yerHB
lva—wsl? \y2 =~ m—w0

1 E —_ —
_ mm[ ] (yz Ysp . V4 le>+
lya ~y1|? \va —u3 Vs — Y3
1 _ _
2(?;4 Yig Y2 y3B)]B
lys — y3? \y2 — 1 Y2 — U1
; — 2 —
(Y2 + ya) . (1 +y32)l B(B-F)
Iyz—yll |y4—y3|

(20)

Let us call ,
|

|y +ya) = (y1 +y3)
r(t) = 5 5
ly2 — y1[*[ys — ysl
Equation (20) can be rewritten as

{ReB’ = —2r(t)(ImB)? = —2r(t)(h2 - (ReB)?)
ImB’ =  2r(t)(ImB)(ReB)

We know that B moves on a circle (Lemma 3) and that unless we are
looking at a cocyclical or colinear evolving family, because of uniqueness
in the Cauchy-Lipschitz Theorem, B cannot be real (Lemma 2) so that
ImB cannot be zero. As it is continuous on the interval I, it is of
constant sign. Now we observe that r(¢) vanishes if and only if y(t) is
a parallelogram: this can only happen if we are looking at an evolving
family of parallelograms (Lemma 4). Hence, we have (ii). (iii) follows
by solving the differential equation governing ReB. ]
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4. The main results

Let us recall that for a quadrilateral 4°, we put A% = (4§ —99)/(4§ —
y9). Observe that we can suppose A® % —1 because if this was the case
we could swap ¥ and y4 without changing the geometry of the problem.
Let us put B® = B,o defined by (14).

We will say that 3° is of type (0) if 4° is a parallelogram or if 3 is
cocyclical or colinear. Observe that Lemmas 2 and 4 tell us how such

quadrilaterals evolve.
5

0 _ 2
We will say that y° is of type (1) if |[B%| = %ﬁ:‘} )
A —1y? A% —1)?
D 2 0 e m——
ImB Im<A0+1> >0 and ReB >R€<A0+1> .
We will say that 40 is of type (II) in the other cases. (See Figure 1.)
A%~ 1)?
(AO + 1) oy

1
i
i
{
t
i
!
i
1
!
i
t
& ,
§
!
l
t
i
i
!
!
l
[
{
i
!
‘

FiGURE 1. If BY is on the arc (I}, the quadrilateral is
of type (I), if B® is in zome (II), the quadrilateral is of
type (IT).
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THEOREM 1. Let y° be a quadrilateral then there exists an interval
I =[0,T*[ and a unique family y of quadrilaterals defined on I, evolving
by Menger curvature such that y(0) = y°. Moreover,

o If 9 is of type (I) then ast — T*,
A —1\?
B(t) — (——-—AO n 1)
and, the rescaled quadrilaterals Qj—;’g%@ tend to the parallelo-
gram '
(-2,-2 41, +2))
2" 272 2/
o Ify0 is of type (II) then ast — T*,
B(t) — —|B°|

and, the rescaled quadrilaterals &%’LWE

— tend to the cocyclical
or colinear quadrilateral

0 0
(b8

where

00 — 1 (A0 —1)2+ | BOJ(AD + 1)?
2 1+1B9]

and VES the analytic continuation of the square root along the arc

described by [(A? —1)?2 — B(A®+1)?)]/(1 — B) as B describes the

small arc between B® and —|B°| and such that

(W3 +93) — (W3 +97) _ ;\/(AO 17— BO(AD 1)
1- BO '

2(y3 — ) 2

Proof. Let us suppose that y¥ is not of type (0) and let us use the
Cauchy-Lipschitz Theorem to get an evolving family starting at ¢° which
is a maximal solution, defined on the interval [0, 7*[, of the differential
system (5) with initial condition y(0) = 3°.

By Lemma 5, we know that B(t) has a limit By~ as t — 1. To
get the Theorem, we only have to prove that Bp- = —IBO( or By» =
(A0 = 1) /(A + 1))2.

The statements about the rescaled quadrilaterals will be just an easy
use of (16) to find the limit of the midpoint of the diagonals of the
rescaled quadrilateral and the fact that A is constant.
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Observe also that, because of the way B moves on the circle of center
0 and radius |BP|, if 4° is of type (I) then Bp- cannot be —|B°| and if
0 is of type (II) then Bp~ cannot be ((A? —1)/(AY +1))2.

Let us suppose that
A —1\?
B # (3031)

then because of (16) and an easy compactness argument, there exists a
real constant K > 1 such that for all ¢ € [0, 7],

1) K Mys— | < (e +va) — (1 + y3)| < Klys — 1.
Hence, because of the triangle inequality, we have that for any ¢ € Z/4Z,

(22) lyir1 — i) < 5 (1 + K + |A])lys — u1l.
Hence,
(23) L(t) <2(1 + K + [Af)|ys ~ y1l-
Moreover, using (6), Lemma 3, and
2
<
(24) el w)| £ s

for any distinct points (u,v,w) in C, we obtain that, for all ¢ € [0, T,
1
LY = 3 > e + le)lyirn — wil
i€Z/AL
(25) < K'lys—wl™h

This gives us that the function ¢ defined in (18) satisfies for all ¢ €
[0,T*[, on one hand, by (21), (22), and (23),

|m+m (y1 + ys)|?
t) = dr
v ly2 — v11?|ya — ysl?
todr
> 44
(26) > K /0 7

and, on the other hand, by (21), (22), and (25),

wo 2 K [T

(27) > K"n
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Because of Lemma 5, in order to have B(t) — —|B| as t — T*, it
remains to show that ¢ (t) — o0 as t — T™.

‘There are two possibilities, either T™ = 400 or T™ < +00.

If T* = 400 then as flg is nondecreasing, inequality (26) gives us the
result.

If T* < 400 and L(t) /4 0 as t — T* then we claim that y(t) — y(T*)
where y(T™) is a quadrilateral. The Cauchy-Lipschitz Theorem allows
us to extend the evolution beyond 7™ thus contradicting the maximality
of the family. As L(¢) — 0, inequality (27) shows that ¥ (t) — oo so that
we get the result.

It remains to show why y(t) tends to some quadrilateral as t — T* if
L(t) #~ 0. The lengths of the edges |yi+1 —y;| are nonincreasing (Lemma
1) and positive functions hence they have limits I;. Because of Lemma
3, the numbers I; are related by the relation

Lz = |BY)laly.
None of the numbers [, can be zero. If, for example {; = 0 then either
[y or ly is zero. Suppose it is Iy then we would have by (23)
L(t) < K'ly1—ys

< K'(lyn = v2l + ly2 — wsl)

— K'(li +1) =0,
and this is a contradiction with L(¢) /4 0. Now we have that there exists
a constant lp > 0 such that for all i € Z/4Z, for all t € [0,T*],
(28) [Yir1 — yi| > lo.

Thanks to (22), there exists some other constant [ > 0 such that, for all
t e [0, T,

(29) lys —w1| >1 and |yg —yo| > 1.
This shows, using (24), that for all 7 € Z/4Z, for all ¢ € [0, T™],
2
|CZ‘[ < 7

Coming back to the differential system (5), this shows that the functions
y; are %—Lipschitz on [0,7*[. Hence they have limits y;(T*) as t — T~
and the map ¢ — y;(T™) is injective by (28) and (29). O

We have seen that if we start with a colinear quadrilateral 1° then
T* = oo whereas if 4% is a cocyclical quadrilateral or a parallelogram
then T™ is finite (see Lemma 2 and 4). We can observe that the only
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way to have a colinear shape in the limit is to have AC real. The fol-
lowing proposition shows that the situation when A° is not real is well
understood.

PrOPOSITION 2. If A ¢ R then T* < oo, T* = C.L(0)* where C is
a constant depending only on the shape of 4.

Moreover, as t — T™, L(t) — 0 and there exists a point z € C such
that y(t) — (z,z,z,z).

Proof. Theorem 1 shows that if A? ¢ R, the rescaled quadrilaterals
(y — (y3 +v1)/2)/(ys — y1) tend to a noncolinear quadrilateral. Hence
there exists 0 < tg < T* such that for ¢5 < t < T™, the quantities
lys —v1|, |¥ir1 — wil, 1/|ci| are comparable within positive multiplicative
constants. Because of Lemma 1, we have, for any t € [to, T,
d —e
2 —nl s —,
dt v | ly2 — y1]
where € is a positive constant. Integrating, we get that
(to) —31(t0)? T < lya(to) — 91 (t0)*

t < v ,  hence
€ €

Starting with 0 of length L° and rescaling we get a quadrilateral §° of
length 1. A simple homogeneity argument gives us that 7% = (L9)27™.
Just as in the proof of Theorem 1, if L(t) /4 0 as t — T, we could
contradict the maximality of T* by extending the motion beyond T™.
Now, let us observe that by Theorem 1 and Lemma. 1, there exists a
time 0 < top < 7™ and a constant A > 0 such that for each ¢ € Z/4Z, for
each tg < t < T,
lyi| < —AL'.
Therefore the functions y, are integrable over [0, T*[ so that the functions
¥; have limits y;(T™) as t — T, which are equal because L(t) — 0. O
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