References
- Aeronautics Learning Labratory for Science Technology and Research (ALLSTAR) of the Florida International University (2011), Propeller Aircraft Performance and The Bootstrap Approach, https://web.eng.fiu.edu/allstar/index.htm.
- Airliners.net (2015), http://www.airliners.net/aircraft-data/stats.main?id=145, Santa Monica, CA, USA.
- Ait Saadi, A., Soukane, A., Meraihi, Y., Benmessaoud Gabis, A., Mirjalili, S. and Ramdane-Cherif, A. (2022), "UAV path planning using optimization approaches: A survey", Arch. Comput. Meth. Eng., 29(6), 4233-4284. https://doi.org/10.1007/s11831-022-09742-7.
- Anderson, J.D. and Bowden, M.L. (2005), Introduction to Flight, Vol. 582, McGraw-Hill Higher Education, New York.
- Cavcar, M. (2004), "Propeller", School of Civil Aviation, Eskisehir, Turkey.
- Commercial Aviation Safety Team (CAST) (2011), Propeller Operation and Malfunctions Basic Familiarization for Flight Crews, http://www.cast-safety.org/pdf/4_propeller_fundamentals.pdf.
- Cowley, W.L. and Levy, H. (1920), Aeronautics in Theory and Experiment, 2nd Edition, Edward Arnold Publisher, London, UK.
- Frazzoli, E., Dahleh, M.A. and Feron, E. (2005), "Maneuver-based motion planning for nonlinear systems with symmetries", IEEE Trans. Robot., 21(6), 1077-1091. https://doi.org/10.1109/TRO.2005.852260.
- Gramajo, G. and Shankar, P. (2017), "An efficient energy constraint based UAV path planning for search and coverage", Int. J. Aerosp. Eng., 2017, Article ID 8085623. https://doi.org/10.1155/2017/8085623.
- Granelli, F. (2007), Carl Goldberg Falcon 56, The Academy of Model Aeronautics' Sport Aviator, the E-Zine for the Newer RC Pilot, December.
- Horizon Hobby (2017), https://www.horizonhobby.com/product/airplanes/airplane-accessories/airplane-engines-15042--1/gt80-twin-cylinder-(488-cu-in)-zene80t. (accessed 04 Sept 2023)
- Kamm, R.W. (2002), "Mixed up about fuel mixtures", Aircraft Maintenance Technology, February.
- Labonte, G. (2012), "Formulas for the fuel of climbing propeller driven planes", Aircraft Eng. Aerosp. Technol., 84(1), 23-36. https://doi.org/10.1108/00022661211194951.
- Labonte, G. (2016), "Airplanes at constant speeds on inclined circular trajectories", Adv. Aircraft Spacecraft Sci., 3(4), 399-425. https://doi.org/10.12989/aas.2016.3.4.399.
- Labonte, G. (2017), "Low thrust inclined circular trajectories for airplanes", Adv. Aircraft Spacecraft Sci., 4(3), 237-267. https://doi.org/10.12989/aas.2017.4.3.237.
- Labonte, G. (2020), "How airplanes fly at power-off and full-power on rectilinear trajectories", Adv. Aircraft Spacecraft Sci., 7(1), 53-78. https://doi.org/10.12989/aas.2020.7.1.053.
- Lotkin, M. (1951), "On the accuracy of Runge-Kutta's method", Math. Comput., 5, 128-133. https://doi.org/10.1090/S0025-5718-1951-0043566-3
- Mair, W.A. and Birdsall, D.L. (1992), Aircraft Performance, Cambridge Aerospace Series 5, Cambridge University Press, Cambridge, GB.
- McIver, J. (2003), Cessna Skyhawk II/100, Performance Assessment, Temporal Images, Melbourne, Australia.
- Military, https://www.militaryfactory.com/aircraft/detail.php?aircraft_id=2003#specifications.
- Poudel, S., Arafat, M.Y. and Moh, S. (2023), "Bio-inspired optimization-based path planning algorithms in unmanned aerial vehicles: A survey", Sensor., 23(6), 3051. https://doi.org/10.3390/s23063051.
- Roud, O. and Bruckert D. (2006), Cessna 182 Training Manual, Red Sky Ventures and Memel CATS, Second Edition 2011, Windhoek, Namibia.
- Stengel, R.F. (2004), Flight Dynamics, Princeton University Press, Princeton, New Jersey.
- Varsha, N. and Somashekar, V. (2018), "Conceptual design of high performance unmanned aerial vehicle", IOP Conf. Ser.: Mater. Sci. Eng., 376(1), 012056. https://doi.org/10.1088/1757-899X/376/1/012056.
- Von Mises, R. (1945), Theory of Flight, Dover Publications Inc., New York, NY, USA.