DOI QR코드

DOI QR Code

A method to analyze the flyability of airplane trajectories with specified engine power

  • Gilles Labonte (Department of Mathematics and Computer Science, Royal Military College of Canada) ;
  • Vincent Roberge (Department of Electrical Engineering and Computer Engineering, Royal Military College of Canada) ;
  • Mohammed Tarbouchi (Department of Electrical Engineering and Computer Engineering, Royal Military College of Canada)
  • Received : 2023.09.12
  • Accepted : 2023.12.14
  • Published : 2023.09.25

Abstract

This article introduces a formalism for the analysis of airplane trajectories on which the motion is determined by specifying the power of the engines. It explains a procedure to solve the equations of motion to obtain the value of the relevant flight parameters. It then enumerates the constraints that the dynamical abilities of the airplane impose on the amount of fuel used, the speed, the load factor, the lift coefficient, the positivity and upper boundedness of the power available. Examples of analysis are provided to illustrate the method proposed, with rectilinear and circular trajectories. Two very different types of airplanes are used in the examples: a Silver Fox-like small UAV and a common Cessna 182 Skylane.

Keywords

References

  1. Aeronautics Learning Labratory for Science Technology and Research (ALLSTAR) of the Florida International University (2011), Propeller Aircraft Performance and The Bootstrap Approach, https://web.eng.fiu.edu/allstar/index.htm.
  2. Airliners.net (2015), http://www.airliners.net/aircraft-data/stats.main?id=145, Santa Monica, CA, USA.
  3. Ait Saadi, A., Soukane, A., Meraihi, Y., Benmessaoud Gabis, A., Mirjalili, S. and Ramdane-Cherif, A. (2022), "UAV path planning using optimization approaches: A survey", Arch. Comput. Meth. Eng., 29(6), 4233-4284. https://doi.org/10.1007/s11831-022-09742-7.
  4. Anderson, J.D. and Bowden, M.L. (2005), Introduction to Flight, Vol. 582, McGraw-Hill Higher Education, New York.
  5. Cavcar, M. (2004), "Propeller", School of Civil Aviation, Eskisehir, Turkey.
  6. Commercial Aviation Safety Team (CAST) (2011), Propeller Operation and Malfunctions Basic Familiarization for Flight Crews, http://www.cast-safety.org/pdf/4_propeller_fundamentals.pdf.
  7. Cowley, W.L. and Levy, H. (1920), Aeronautics in Theory and Experiment, 2nd Edition, Edward Arnold Publisher, London, UK.
  8. Frazzoli, E., Dahleh, M.A. and Feron, E. (2005), "Maneuver-based motion planning for nonlinear systems with symmetries", IEEE Trans. Robot., 21(6), 1077-1091. https://doi.org/10.1109/TRO.2005.852260.
  9. Gramajo, G. and Shankar, P. (2017), "An efficient energy constraint based UAV path planning for search and coverage", Int. J. Aerosp. Eng., 2017, Article ID 8085623. https://doi.org/10.1155/2017/8085623.
  10. Granelli, F. (2007), Carl Goldberg Falcon 56, The Academy of Model Aeronautics' Sport Aviator, the E-Zine for the Newer RC Pilot, December.
  11. Horizon Hobby (2017), https://www.horizonhobby.com/product/airplanes/airplane-accessories/airplane-engines-15042--1/gt80-twin-cylinder-(488-cu-in)-zene80t. (accessed 04 Sept 2023)
  12. Kamm, R.W. (2002), "Mixed up about fuel mixtures", Aircraft Maintenance Technology, February.
  13. Labonte, G. (2012), "Formulas for the fuel of climbing propeller driven planes", Aircraft Eng. Aerosp. Technol., 84(1), 23-36. https://doi.org/10.1108/00022661211194951.
  14. Labonte, G. (2016), "Airplanes at constant speeds on inclined circular trajectories", Adv. Aircraft Spacecraft Sci., 3(4), 399-425. https://doi.org/10.12989/aas.2016.3.4.399.
  15. Labonte, G. (2017), "Low thrust inclined circular trajectories for airplanes", Adv. Aircraft Spacecraft Sci., 4(3), 237-267. https://doi.org/10.12989/aas.2017.4.3.237.
  16. Labonte, G. (2020), "How airplanes fly at power-off and full-power on rectilinear trajectories", Adv. Aircraft Spacecraft Sci., 7(1), 53-78. https://doi.org/10.12989/aas.2020.7.1.053.
  17. Lotkin, M. (1951), "On the accuracy of Runge-Kutta's method", Math. Comput., 5, 128-133. https://doi.org/10.1090/S0025-5718-1951-0043566-3
  18. Mair, W.A. and Birdsall, D.L. (1992), Aircraft Performance, Cambridge Aerospace Series 5, Cambridge University Press, Cambridge, GB.
  19. McIver, J. (2003), Cessna Skyhawk II/100, Performance Assessment, Temporal Images, Melbourne, Australia.
  20. Military, https://www.militaryfactory.com/aircraft/detail.php?aircraft_id=2003#specifications.
  21. Poudel, S., Arafat, M.Y. and Moh, S. (2023), "Bio-inspired optimization-based path planning algorithms in unmanned aerial vehicles: A survey", Sensor., 23(6), 3051. https://doi.org/10.3390/s23063051.
  22. Roud, O. and Bruckert D. (2006), Cessna 182 Training Manual, Red Sky Ventures and Memel CATS, Second Edition 2011, Windhoek, Namibia.
  23. Stengel, R.F. (2004), Flight Dynamics, Princeton University Press, Princeton, New Jersey.
  24. Varsha, N. and Somashekar, V. (2018), "Conceptual design of high performance unmanned aerial vehicle", IOP Conf. Ser.: Mater. Sci. Eng., 376(1), 012056. https://doi.org/10.1088/1757-899X/376/1/012056.
  25. Von Mises, R. (1945), Theory of Flight, Dover Publications Inc., New York, NY, USA.