• Title/Summary/Keyword: automatic trajectory planning

Search Result 22, Processing Time 0.022 seconds

Development of an automatic trajectory planning system(ATPS) for painting robots (페인팅로보트의 자동궤적계획시스템 개발에 관한 연구)

  • 서석환;우인기;노성기
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1990.10a
    • /
    • pp.394-399
    • /
    • 1990
  • We develop an automatic trajectory planning system (ATPS) for painting robots by proposing a new trajectory planning scheme. The new scheme considers geometric modeling, painting mechanics, and robot dynamics to output an optimal trajectory (in the sense of coating thickness and painting time) based on the CAD data describing the shape of objects, The new scheme is implemented in SUN/4 workstation to develop an ATPS for painting robots. To test the validity of the new scheme and to illustrate the developed system, numerous runs are performed and analyzed.

  • PDF

Development of an Optimal Trajectory Planning Algorithm for an Automated Pavement Crack Sealer

  • Yoo, Hyun-Seok;Kim, Young-Suk
    • Journal of Construction Engineering and Project Management
    • /
    • v.2 no.1
    • /
    • pp.35-44
    • /
    • 2012
  • In the last two decades, several tele-operated and machine-vision-assisted systems have been developed in the construction and maintenance area, such as pavement crack sealing, sewer pipe rehabilitation, and excavation. In developing such tele-operated and machine-vision-assisted systems, trajectory plans are very important tasks for the optimal motions of robots whether their environments are structured or unstructured. This paper presents an optimal trajectory planning algorithm used for a machine-vision-assisted automatic pavement crack sealing system. In this paper, the performance of the proposed optimal trajectory planning algorithm is compared with the greedy trajectory plans, which are used in the previously developed pavement crack sealing systems. The comparison is based on the computational cost vs. the overall gains in crack sealing efficiency. Finally, it is concluded that the proposed algorithm plays an important role in the productivity improvement of the developed automatic pavement crack sealing system.

Online Trajectory Planning for a PUMA Robot

  • Kang, Chul-Goo
    • International Journal of Precision Engineering and Manufacturing
    • /
    • v.8 no.4
    • /
    • pp.16-21
    • /
    • 2007
  • Robotic applications, such as automatic fish cutting, require online trajectory planning because the material properties of the object, such as the bone or flesh conditions, are not known in advance. Different trajectories are required when the material properties vary. An effective online trajectory-planning algorithm is proposed using quaternions to determine the position and orientation of a robot manipulator with a spherical wrist. Quaternions are free of representation singularities and permit computationally efficient orientation interpolations. To prevent singular configurations, the exact locations of the kinematic singularities of the PUMA 560 manipulator are derived and geometrically illustrated when a forearm offset exists and the third link length is not zero.

Low thrust inclined circular trajectories for airplanes

  • Labonte, Gilles
    • Advances in aircraft and spacecraft science
    • /
    • v.4 no.3
    • /
    • pp.237-267
    • /
    • 2017
  • Automatic trajectory re-planning is an integral part of unmanned aerial vehicle mission planning. In order to be able to perform this task, it is necessary to dispose of formulas or tables to assess the flyability of various typical flight segments. Notwithstanding their importance, there exist such data only for some particularly simple segments such as rectilinear and circular sub-trajectories. This article presents an analysis of a new, very efficient, way for an airplane to fly on an inclined circular trajectory. When it flies this way, the only thrust required is that which cancels the drag. It is shown that, then, much more inclined trajectories are possible than when they fly at constant speed. The corresponding equations of motion are solved exactly for the position, the speed, the load factor, the bank angle, the lift coefficient and the thrust and power required for the motion. The results obtained apply to both types of airplanes: those with internal combustion engines and propellers, and those with jet engines. Conditions on the trajectory parameters are derived, which guarantee its flyability according to the dynamical properties of a given airplane. An analytical procedure is described that ensures that all these conditions are satisfied, and which can serve for producing tables from which the trajectory flyability can be read. Sample calculations are shown for the Cessna 182, a Silver Fox like unmanned aerial vehicle, and an F-16 jet airplane.

An Integrated Robot-Trajectory-Planning Scheme for Spray Painting Operations (스프레이 페인팅 작업을 위한 일관화된 로보트 궤적계획법에 관한 연구)

  • Suh, Suk-Hwan;Woo, In-Kee
    • IE interfaces
    • /
    • v.3 no.2
    • /
    • pp.23-38
    • /
    • 1990
  • The use of robots for painting operations is a powerful alternative as a means for automation and quality improvement. A typical method being used for motion planning of the painting robot is to guide the robot along the desired path : the "lead-through" method. Although this method is simple and has been widely used, it has several drawbacks a) The robot cannot be used during the teaching period, b) A human is exposed to a hostile environment, c) The motions taught are, at best, human's skill level. To deal with the above problems, an integrated robot-trajectory planning scheme is presented. The new scheme takes CAD data describing the shape and geometry of the objects, and outputs an optimal trajectory in the sense of coating thickness and painting time. The purpose of this paper is to investigate theoretical backgrounds for such a scheme including geometric modeling, painting mechanics and robot trajectory planning, and develop algorithms for generating spray gun paths and minimum-time robot trajectories. Future study is to implement these algorithms on an workstation to develop an integrated software system ; ATPS(Automatic Trajectory Planning System) for spray painting robots.

  • PDF

Development of an Optimal Trajectory Planning Algorithm for Automated Pavement Crack Sealer (도로면 크랙실링 자동화 장비의 최적 경로계획 알고리즘 개발)

  • Yoo, Hyun-Seok;Lee, Jeong-Ho;Kim, Young-Suk
    • Korean Journal of Construction Engineering and Management
    • /
    • v.11 no.4
    • /
    • pp.68-79
    • /
    • 2010
  • During the last two decades, several tele-operated and machine-vision-assisted systems have been developed in construction and maintenance area such as pavement crack sealing, sewer pipe rehabilitation, and excavation. In developing such tele-operated and machine-vision-assisted systems, trajectory plans are very important tasks for optimal motions of robots whether their environments are structured or unstructured. This paper presents an optimal trajectory planning algorithm used for a machine-vision-assisted automatic pavement crack sealing system. In this paper, the performance of the proposed optimal trajectory planning algorithm is compared with the greedy trajectory plans which are used in previously developed pavement crack sealing systems. The comparison is based on computational cost versus overall gains in crack sealing efficiency. Finally, it is concluded that the proposed algorithm plays an important role in productivity improvement of the automatic pavement crack sealing system developed.

Constant speed, variable ascension rate, helical trajectories for airplanes

  • Labonte, Gilles
    • Advances in aircraft and spacecraft science
    • /
    • v.5 no.1
    • /
    • pp.73-105
    • /
    • 2018
  • A particular type of constant speed helical trajectory, with variable ascension rate, is proposed. Such trajectories are candidates of choice as motion primitives in automatic airplane trajectory planning; they can also be used by airplanes taking off or landing in limited space. The equations of motion for airplanes flying on such trajectories are exactly solvable. Their solution is presented, together with an analysis of the restrictions imposed on the geometrical parameters of the helical paths by the dynamical abilities of an airplane. The physical quantities taken into account are the airplane load factor, its lift coefficient, and the thrust its engines can produce. Formulas are provided for determining all the parameters of trajectories that would be flyable by a particular airplane, the final altitude reached, and the duration of the trajectory. It is shown how to construct speed interval tables, which would appreciably reduce the calculations to be done on board the airplane. Trajectories are characterized by their angle of inclination, their radius, and the rate of change of their inclination. Sample calculations are shown for the Cessna 182, a Silver Fox like unmanned aerial vehicle, and the F-16 Fighting Falcon.

How airplanes fly at power-off and full-power on rectilinear trajectories

  • Labonte, Gilles
    • Advances in aircraft and spacecraft science
    • /
    • v.7 no.1
    • /
    • pp.53-78
    • /
    • 2020
  • Automatic trajectory planning is an important task that will have to be performed by truly autonomous vehicles. The main method proposed, for unmanned airplanes to do this, consists in concatenating elementary segments of trajectories such as rectilinear, circular and helical segments. It is argued here that because these cannot be expected to all be flyable at a same constant speed, it is necessary to consider segments on which the airplane accelerates or decelerates. In order to preserve the planning advantages that result from having the speed constant, it is proposed to do all speed changes at maximum deceleration or acceleration, so that they are as brief as possible. The constraints on the load factor, the lift and the power required for the motion are derived. The equation of motion for such accelerated motions is solved numerically. New results are obtained concerning the value of the angle and the speed for which the longest distance and the longest duration glides happen, and then for which the steepest, the fastest and the most fuel economical climbs happen. The values obtained differ from those found in most airplane dynamics textbooks. Example of tables are produced that show how general speed changes can be effected efficiently; showing the time required for the changes, the horizontal distance traveled and the amount of fuel required. The results obtained apply to all internal combustion engine-propeller driven airplanes.

Synthesis of Filled-up Pothole Surface by Automatic Pothole Repair Vehicle (자동 도로 수리기에 의해 수리된 도로표면의 예측 표현)

  • 권원태
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.1 no.2
    • /
    • pp.134-143
    • /
    • 1993
  • The trajectory planning for the manipulator installed on "the automatic pothole repair vehicle" is discussed and the final surface of the patched pot hole is simulated in this work. The relationship between the accumulation data of the mixture with and without the movement of the manipulator is identified to utilize the latter data for the calculation of the former one. Based on this relationship, the method to calculate the accumulation of the mixture when the manipulator changes the speed and the direction is also introduced. The trajectory is determined to make the final surface smooth under the condition that the pothole is cut to hexahedron before patching and only the spacing and the shifting of the manipulator is controllable. Final surface is simulated by the computer to prove the adequacy of the determined trajectory.

  • PDF

On determining the flyability of airplane rectilinear trajectories at constant velocity

  • Labonte, Gilles
    • Advances in aircraft and spacecraft science
    • /
    • v.5 no.5
    • /
    • pp.551-579
    • /
    • 2018
  • This work is concerned with the motion of propeller driven airplanes, flying at constant velocity on ascending or descending rectilinear trajectories. Its purpose is to provide important features of rectilinear flights that are required for airplane trajectory planning but that cannot be found already published. It presents a method for calculating the amount of fuel used, the restrictions on the trajectory parameters, as inclination and speed, which result from the load factor, the lift coefficient, the positivity and upper boundedness of the power available. It presents a complete discussion of both ascending and descending flights, including gliding. Some original remarks are made about the parameters of gliding. It shows how to construct tables of parameters allowing to identify rapidly flyable trajectories. Sample calculations are shown for the Cessna 182 and a Silver Fox like unmanned aerial vehicle.