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Robotic applications, such as automatic fish cutting, require online trajectory planning because the material
properties of the object, such as the bone or flesh conditions, are not known in advance. Different trajectories are
required when the material properties vary. An effective online trajectory-planning algorithm is proposed using
quaternions to determine the position and orientation of a robot manipulator with a spherical wrist. Quaternions are
free of representation singularities and permit computationally efficient orientation interpolations. To prevent singular
configurations, the exact locations of the kinematic singularities of the PUMA 560 manipulator are derived and
geometrically illustrated when a forearm offset exists and the third link length is not zero.

1. Introduction

The goal of robotic trajectory planning is to send motion
commands to the robot control system at specific points in time to
ensure the execution of a given manipulator task. A trajectory can be
planned in joint space and/or operational (Cartesian) space. However,
it is more convenient to use an operational space trajectory since the
manipulator tasks are easier to specify; joint space coordinates are
neither orthogonal nor able to separate the position from orientation.'

Trajectory planning in operational space for a robot manipulator
is generally composed of planning the position and orientation of the
end effector. For some applications, such as tool path generation in
surface grinding and polishing, position planning is sufficient and
orientation planning is not required.> However, for many robotic
applications, such as fish cutting, grinding and deburring operations,
and assembly automation, both the position and orientation of the end
effector must be planned together. In applications such as automatic
fish cutting, trajectories cannot be planned off-line before the task
starts because the trajectory requirements may change during the
actual processing. For example, a different trajectory is immediately
required if a bone is reached (bone positions are not known in
advance) or the body is deformed.

Accurate motion tracking is usually achieved by designing good
control strategies.3 “ However, good trajectory planning is required
before the controller is designed to achieve good tracking
performance.

Angeles and Akhras® developed an off-line procedure to plan the
position and orientation of Cartesian trajectories in robot
manipulators with 3-degrees-of-freedom (DOF) spherical wrists. Wu
and Jou® proposed a geometric approach to plan the orientations of a
robot end effector along a prescribed translational path using natural
local coordinates and a rotation matrix. Other studies have used
orientation interpolation using quaternions’ for computer and space
applications.>® Quaternions have also been introduced for the
resolved rate and acceleration control of manipulators'® and other
dynamic applications.11 Quaternions describe an object, providing
planning orientations that are computationally efficient in Cartesian
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space and free of the singularity gimbal lock problem'! that exists in
Euler angle representations.

The effectiveness of trajectory planning is related to the inverse
kinematics algorithm, singularity problems, computational load, and
Cartesian space trajectory generation. Efficient closed-form solutions
for the inverse kinematics of the PUMA robot have been developed
by several researchers.’>* In addition to finding inverse kinematic
solutions, it is also important to select an appropriate solution from
several available solutions, especially when flip and no-flip solutions
are available at consecutive sampling times of a robotic task.

Singular configurations should be avoided through trajectory
planning whenever possible, either by avoiding the actual singular
configurations or by using joint space interpolation. A PUMA
manipulator has three types of kinematic singularities, consisting of
shoulder, elbow, and wrist singularities.’*'> Since most studies in the
literature'* '® assume that no shoulder or elbow offset exists and that
the length of the third link is zero, it follows that theoretical singular
configurations are generally different from real ones encountered in
an actual PUMA 560 robot. .

In this paper, the exact singular configurations of a PUMA 560
manipulator is determined when a shoulder offset exists, and the three
types of singular configurations are geometrically illustrated. An
effective online trajectory-planning algorithm for both the position
and orientation of a robot manipulator is then presented using
quaternions for orientation planning. The orientation of the end
effector is specified by three orthogonal unit vectors of the tool frame
that are expressed in the Cartesian world coordinate frame.

The outline of this paper is as follows. Section 2 describes a new
inverse kinematic solution for a PUMA 560 robot using a different
home configuration and different coordinate frames. In Section 3,
exact singular configurations of the PUMA 560 robot are derived
when an elbow offset exists. An orientation planning technique using
quaternions is presented in Section 4, and an online trajectory
planning technique for an automatic fish-cutting process is proposed
in Section 5. The conclusions are presented in Section 6.
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2. The Inverse Kinematics Problem of a PUMA

Manipulator

The inverse kinematics problem of a manipulator is used to
determine the joint variables in terms of a given position and the
orientation of the end effector. The solutions for the inverse
kinematics of a PUMA manipulator have been derived by Elgazzar'?,
Paul and Zhang, and Cote et al'* The stretched-up home
configuration adopted by the PUMA manufacturer'’ and Elgazzar'? is
generally not desirable because it contains an elbow singularity as
well as a wrist singularity. Paul and Zhang' selected an elbow-up
home configuration, but an elbow-down home configuration is more
appropriate for manipulator tasks such as fish cutting and component
assembly since they are mostly carried out using elbow-down
configurations. If the home configuration is defined as elbow-up, the
end-effector has to move across the elbow singularity to perform
elbow-down tasks, which is not desirable.

Therefore, the home configuration and coordinate frames for a
PUMA 560 manipulator were defined (Fig. 1) following the Denavit—
Hartenberg convention, whose parameters are given in Table 1. The
PUMA 560 robot is kinematically designed to decouple the position
and orientation determination processes using a spherical wrist, which
simplifies the kinematics problem.

Fig. 1 Home configuration and coordinate frames for the PUMA 560
manipulator

Table 1 Denavit-Hartenberg parameters of the PUMA 560
manipulator
Link 6; (rad) d; (m) a; (m) a; (deg)

1 6, 0 0 90

2 6, 0 0.4318 0

3 o, 0.1254 0.0203 90

4 0, 0.4318 0 90

5 s 0 0 -90

6 O 0 0 0

A PUMA 560 manipulator has eight different inverse kinematic
solutions if the wrist center (the origin of the x4y z¢ frame) is within
the workspace and the configuration does not have singularities. Let
the position of the wrist center with respect to the base frame x, 9 zp
be [ps, pys p.]" and the orientation be

Ox ax
0)’ ay
Oz az

The Paul and Zhang13 solutions for joint variables corresponding to
the end effector position and orientation can then be modified for the
present home configuration as follows:
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where Atan2 is the arctangent function of two arguments that returns
values from —1 to &, ¢; = cos@;, §; = sinf;, cx3 = cos (B,+83), and
$p3 = sin (€,+83). The two solutions to 8, correspond to elbow-up
and elbow-down configurations, and the two solutions to &,
correspond to flip and no-flip solutions. If &= 0, an infinite number
of solutions exist (#¢= — 84 for any &) for which the two joint axes
of Joints 4 and 6 are collinear.

One can avoid shoulder and elbow singularities when planning a
trajectory for a specific manipulator task by identifying those singular
configurations in advance. However, wrist singularities must be
tolerated since they can occur anywhere inside the workspace. If the
motion trajectory is planned across a wrist singularity (5= 0), the
selection between two solutions for @, is important because a wrong
choice could lead to an angle jump of m radians or an angle
discontinuity in the consecutive joint angles of &,. Even if the
solution of @, depends on the joint angle 85, the following simple
logic is used to choose a continuous solution 8, instead of using &5:

If |64 (t,2) = 0,4(1 )| = 1, select the other solution 6,

Two consecutive joint angles 84 cannot be a large angle such as
radians in a smooth operation. Therefore, if one encounters a large
angle jump at 6, during the trajectory planning, this is interpreted as
an inappropriate &, solution since one passes through a wrist
singularity 65 = 0. Instead, the other 6, solution is selected to obtain
a smooth operation. In other words, if the difference between the
previous angle and the present angle of 8,4 is approximately 7, the
other solution for & 4 is selected as the present joint angle 6 4.

3. Analysis of the Kinematic Singularities of the PUMA
Manipulator

The kinematic singularities of a manipulator are defined as the
configurations at which the Jacobian J(q) is rank-deficient and
consequently the mobility of the manipulator is reduced. Kinematic
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singularities may also have other characteristics, such as an infinite
number of inverse kinematic solutions.® The Jacobian of a
manipulator defines the mapping [i)TwT]T = J(q) q between the

joint velocity vector q and the end effector velocity vector [p” &’ 17,

which is expressed with respect to the fixed base frame x, vy 2.
For the PUMA 560 manipulator, the Jacobian J(q) is given by

(jn —1(@y8; + 3853 —dyC3) i3
Ja =81(ay8; + a38y3 = dyCp3) 3
J(q) = 0 @6 + 3653 +dySy3 J3
0 8§ 8
0 -¢ -
|1 0 0
0 0 0 |
0 0 0
0 0 0
G823 C1Cp384 —S1C4 —CICpC485 — 515485 + 01553C 5
51523 S1€0384 T OCs  —81C03C4S5 T 615485+ 8153C 5
—Cn3 52354 T823€485 ~ €365
where

Ji ==81(ay6; +a3653 +d 455;) + dsy
J21 =€1(@y¢; +a50y3 +d 4523) + d3s
J13 =—0155(a3¢3 +d,y53) — 0105 (ay8; — dycy)
J23 = =81859(a505 +dy83) = 8165 (a385 — dyey)
T3z =ca(aze; +dysy) = s5(aysy —dycy).
The rank deficiency of J(q) for this manipulator implies det J(q) =0,

which after extensive mathematical manipulation gives the following
three equations:

AyCy +A3Cy; +d,55; =0 1
as8; —dye; =0 2)
85=0 €))

Equation (1) corresponds to the shoulder singularities of the
PUMA manipulator. Examples of singular shoulder configurations
are shown geometrically in Fig. 2. These singularities arise when the
x; coordinate of the wrist center o, is zero for any trunk rotation &,.
They appear as elbow-up or elbow down configurations, where the
velocity component in the z; direction cannot be generated, thus
creating a degenerate z, direction. If an offset d; equals zero, these
singular configurations will have an infinite number of solutions to
the inverse kinematics for which the wrist center intersects the axis of
the trunk rotation z,.

Equation (2) represents elbow singularities because it originates
from the motion of the elbow joint #;. These singularities occur
when the wrist center is extended (but not fully extended) or retracted
(but not fully retracted), as shown in Fig. 3. The exact locations of
these singularities are configurations with &; = 87.308° or —92.692°
when the forearm offset dy = 0.4318 m and the link length
a;=0.0203 m. However, the retracted configuration does not occur
within the workspace due to the motion limitation of Joint 3. The
degenerate direction of these singularities is x;. Singular
configurations given in previous studies'™ ' are different from those
derived in this paper and encountered in actual practice because a
shoulder and elbow offset exist and the length of the third link is not
zero.

Equation (3) corresponds to wrist singularities, which arise
whenever the joint axes z; and zs are collinear. When this singularity
is encountered, the mobility is reduced and the number of solutions to
the inverse kinematics is infinite. Shoulder and elbow singularities
can be avoided in the trajectory planning by adjusting the robot size
and/or selecting the manipulator working region carefully, but wrist

singularities can be encountered anywhere inside the manipulator
workspace; as a consequence, special care must be taken when
planning the trajectory of the end effector.

®).
Fig. 2 Shoulder singularities of the PUMA 560 manipulator:
(a) elbow-up and (b) elbow-down configurations

Fig. 3 Elbow singularities of the PUMA 560 manipulator:
(a) extended and (b) retracted configurations

4. Orientation Planning Using Quaternions

When planning a rotation that reorients the end effector from one
orientation to another, Euler angle, Bryant angle, or roll-pitch-yaw
angle representations are not appropriate if intermediate orientations
are required. Euler angle representations also suffer from gimbal lock
or representation singularities.'' When planning intermediate
orientations as well as the final orientation, an axis-angle
representation (u, €) is more intuitive than angle representations from
a physical point of view. However, this representation also has a
drawback when the rotation angle &equals 0 or «, for which the axis
u is not defined. Quaternion representations are free of these
singularities and computationally efficient. Quaternions are relatively
well-known and have been successfully used for computer graphics
and space technology.

The quaternion q is a four-parameter representation of a rotation
using three independent parameters as follows:

‘)
q cos(@/2) IR
= = g, +q; +q5 +q5 =1 4
q 7 {—USin(Q/Z) 90 T4 t493 43 )
q;

where the unit vector u is the eigenvector of the rotation matrix R (or
the axis of rotation corresponding to the rotation matrix R), and & is
the rotation angle about u. One coordinate frame is rotated with
respect to the other instead of considering the rotation of rigid objects.
The relationship between the quaternion q and the rotation matrix R
in component form is®

2(9195 + 9092)
2(9,95 — 9oa1)
9 —qr 43 + 43

&)

29,9, —4093)
9 -4 +45 - 43
2(9295 + 9091

9% +9i -4 - 43
=\ 2(q\92 +9093)
29195 —49092)
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Suppose the original orientation of the end effector is R and the
final orientation is R; in Cartesian space. Then the rotation matrix
between the two orientation is R = (R10 )TRg , and the axis of rotation
u and the rotation angle 8, are obtained from the quaternion
relationship given by Eq. (5) (refer to the algorithm given in Ref. 8).
The angular position §and angular velocity @ at each sampling time
can be computed using, for example, the trapezoidal velocity profile
shown in Fig. 4(a). Then the orientation in Cartesian space at the
current sampling time can be obtained from Rlo postmultiplied by the
current rotation matrix. If the angle change is too small to reach the
plateau of the trapezoidal velocity profile, then the triangular profile
shown in Fig. 4(b) will be followed.

O] (o)

@ (b)
Fig. 4 Trapezoidal angular velocity profile for (a) a large angle and
(b) a small angle

5. Trajectory Generation for a Robot Manipulator

Although the manipulator joint coordinates fully specify the
position and crientation of the end effector, they are not suitable as a
working coordinate system because they are not orthogonal or able to
separate position from orientation. In this section, trajectory planning
in Cartesian space is considered for which path motions are planned
instead of point-to-point motions. The Cartesian space trajectory is
then converted to a joint space trajectory that is used as motion
commands for the joint servos.

Fig. 5 Fish-cutting automation

For robotic applications, such as automatic fish cutting shown in
Fig. 5, it is not always feasible to generate the trajectory in advance or
off-line because a different operation may be required due to changes
in the environment (e.g., encountering a bone). In such applications,
motion commands for the present instant in time must be generated
online according to the present environment conditions. Online
trajectory planning also avoids computer memory problems that
sometimes occur when all the joint commands for the entire path are
computed in advance. To save on the computational time required for
the trajectory generation, the motion commands are generated at
longer sampling times and at a higher level of the hierarchical control
structure. Then they are interpolated in the joint space to obtain the
fine motion commands at the joint servo control level. In other words,
a control structure with multiple sampling rates is desirable.

A manipulator trajectory in Cartesian space was planned using
path motions, not point-to-point motions. The procedure used to
generate online motion commands was as follows. First an
appropriate tool frame (or tool tip) motion of the robot manipulator
with respect to the world coordinate frame XYX was generated in
some manner, for example, using the trapezoidal velocity profiles as
shown in Fig. 6, where one profile is for the linear velocity while the

other profile is for the angular velocity. Since the position and
orientation planning can be considered separately (but not
independently) due to the spherical wrist, the maximum linear and
angular accelerations are used so that the position and orientation
planning might end at different instants in time.

The tool frame motion is generated in two steps, consisting of
pre-calculation of the trajectory parameters, such as the instants in
time of trapezoidal velocity profiles and acceleration components,
and online path generation at each sampling time. The task
conditions are checked in the second step. If a change occurs in the
conditions, a different trajectory is immediately planned in Cartesian
space.

V,0
A
Opax b+ r .
v | : \\
- : . >
0 4t oty ts lg

Fig. 6 Position and orientation trajectory planning in Cartesian space
using trapezoidal velocity profiles

The tool tip motion (i.e., position and velocity) commands for the
position and orientation at a specific sampling time are first converted
into motion commands for the wrist center, and then into motion
commands with respect to the robot base frame instead of the world
coordinate frame. Finally, they are converted into either joint
coordinate commands using the inverse kinematics algorithm and/or
joint velocity commands using the Jacobian inverse J™'. The damped
least-squares Jacobian inverse is adopted instead of the Jacobian
inverse in the neighborhood of kinematic singularities and at the
singularities themselves. '’

Using the above technique, a trajectory can be planned through a
singular wrist configuration. The fine joint motion commands at each
sampling time of the joint servo control are obtained by interpolating
the joint motion commands at the joint servo control level. The
procedure can be summarized as follows:

prepare_path_planning( ... )

interrupt_service_routine( )
Cartesian_motion_command( ... )
wrist_center_motion( ... )
transform_to_robot_base_frame( ...)
inverse_kinematics( ...)

inverse velocity_kinematics( ... )

The above algorithm was implemented using ANSI C and applied
successfully to an automated fish-cutting process using a PUMA 560
robot manipulator. The C code structure for the path planning is
shown in Fig. 7. The functions PTP (P1l, P2), StraightLine (P, P2,
vi, vf), SemiCircleUP (P1, P2), VerticalDownCut (P1, P2, P3, vi),
and HorizontalCut (P1, P2, vi, vf) were used to generate each
segment of the fish-cutting path. The entire C code consisted of
2300 lines.

The vertical and horizontal cutting motion elements provide the
fish-cutting operations. During the vertical cutting motion, the end
effector moves downward and cuts the fish vertically. When the
effector touches the flesh of the fish during the downward motion, its
speed is reduced as specified and maintained until it reaches a bone,
whereupon it stops with the maximum deceleration. This motion
generation element requires flesh and bone hitting information, which
must be generated online. The horizontal cutting motion cuts the fish
horizontally. This motion element has the capability to start or end
with either a zero velocity or the maximum cutting velocity, as
specified. Whenever a bone is touched, the end effector moves one
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step upward and then continues its horizontal motion.
#include <stdio.h>
#include "pumapath h"
void main()
double H[4][4] = { 1.0, 0.0, 0.0, 04521,

0.0,-1.0, 0.0,-0.1254,
0.0, 0.0,-1.0, 0.24003-TOOL_LENGTH,

¢.0,0.0,00, 10}, // Home pose
double A[4][4]={0.0, 1.0, 0.0, 0.0,
1.0,0.0, 0.0, 0.25,
0.0,0.0-1.0,03,
0.0,00, 040, 1.0}; /7 Start pose

PTP(H, A);

VerticalDownCut(A, Ab, Ah, 0J; 7/ 0 means zero initial vel.

StraightLine(Ab, A, 0, 1),/%0,1 means zero initial velority and
nonzero final velocity, 1.e.. maintain max. velocity */

B2][3]1=A[2}{3], #actalz

SemiCircleUp(A, B):

Bb[1][3]=B[1}{3}; #actualy
VerticalDownCut(B, Bb, Bly, 1); # 1 means nonzero initial vel.
StraightLine(Bb, B, 0, 1);

HorizontalCut(Q, Dh, 0, 1); // imitial= zero, final_vel=nonzero
HorizontalCut(Dh, Ch. 1. 1); #/ initial= zero, final vel=nonzero

PTP(A. H),
}

Fig. 7 C code structure for path planning

The function PTP (P1, P2) in Fig. 7 generates six joint angle and
angular velocity commands at each sampling time, corresponding to
the position and orientation change between two configurations in
Cartesian space using a trapezoidal velocity profile. The function
StraightLine (P1, P2, vi, vf) is similar to PTP (P1, P2) except that it
maintains the same orientation in Cartesian space during the straight-
line motion. The variables vi and vf are the initial and final velocity
flags: vi = 0 specifies start with a zero velocity, vi = 1 specifies start
with the maximum velocity, vf'= 0 specifies end with a zero velocity,
and vf'= 1 specifies end with the maximum velocity. For example,
StraightLine (P1, P2, 0, 1) will accelerate the end effector from a zero
velocity to the maximum velocity with the prescribed acceleration,
and maintain the maximum velocity to the end point P2.

The function SemiCircleUp (PI, P2) generates an upward
semicircle trajectory in the vertical plane between two Cartesian
positions, P/ and P2. The trajectory keeps the same orientation in
Cartesian space at the maximum speed from P/ to P2. The function
VerticalDownCut (P1, P2, P3, vi) generates a motion command to cut
the fish horizontally. In this function, the main direction of motion is
in the downward z direction; vi = 0 specifies that the motion starts
from a zero velocity at P/, while vi = 1 specifies that the motion starts
with the maximum velocity. If flesh is touched in the downward
motion, the speed decelerates to the speed reducing rate multiplied by
the maximum velocity, which is maintained until bone is touched,
whereupon the end effector stops and its position is returned to P3.
The position P2 is an assumed bone position. If bone is not
encountered before the effector reaches P2, it will stop at P2.

The function HorizontalCut (P1, P2, vi, vf) generates a motion
command to cut fish horizontally. The main direction of the motion is
in the horizontal x or y directions. The flags vi and v/ have the same
meaning as in StraightLine(...) except that the maximum velocity is
the maximum cutting speed, which is the maximum velocity
multiplied by the speed reducing rate defined in 'pumapath.h.’
Whenever a bone is hit during the horizontal motion, the function
generates a one step upward motion in the positive z direction at the
maximum cutting speed for one sampling period.

6. Conclusions

The exact locations and degenerate directions of the shoulder and
elbow singularities of the PUMA 560 manipulator were demonstrated
analytically and geometrically when the forearm offset d; and link
length a; had actual values and were not set to zero. The shoulder
singularities arose when the x; coordinate of the wrist center was zero,
regardless of the trunk rotation. The degenerate direction of these
singular configurations was z;. Elbow singularities occurred when
the wrist center was extended with the elbow joint variable
0;=287.308° (not fully extended) or when the wrist center was
retracted with the elbow joint variable &;= —92.692° (not fully
retracted). The degenerate direction of these singularities was x;. The
exact locations and degenerate directions of the shoulder and elbow
singularities are important since they must be avoided when planning
the trajectory of the PUMA manipulator whenever possible.

An online trajectory generation algorithm for a robot manipulator
was proposed using quaternions for orientation trajectory planning.
The proposed algorithm allowed the planning of a different trajectory
immediately whenever an environmental condition change was
identified. Orientation planning using quaternions was successfully
and efficiently implemented in an automatic fish-cutting process.
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