• Title/Summary/Keyword: Circular Object

Search Result 138, Processing Time 0.031 seconds

Incoherent Tomography for Conducting Cylinder by Using Single-Frequency Time-Harmonic Source (단일 주파수 시간조화 신호원을 사용한 도체기둥의 incoherent 단면영상법)

  • 강진섭;라정웅
    • Journal of the Korean Institute of Telematics and Electronics D
    • /
    • v.35D no.1
    • /
    • pp.1-7
    • /
    • 1998
  • In this paper, an incoherent imaging of a conducting cylinder illuminated by the single-frequency time-harmonic plane wave is obtained via the back-projections of the intensity patterns of the forward total electric field scattered from this object in the circular rotational measurement configuration. The pheonmenon that interference fringes generated in the itesity patterns is removed in the back-projection process is interpreted numerically. This imaging method is validated by imagining conducting circular cylinders and the conditions to ge beter image are investigated.

  • PDF

Properties of the Poisson-power Function Distribution

  • Kim, Joo-Hwan
    • Communications for Statistical Applications and Methods
    • /
    • v.2 no.2
    • /
    • pp.166-175
    • /
    • 1995
  • When a neutral particle beam(NPB) aimed at the object and receive a small number of neutron signals at the detector without any errors, it obeys Poisson law. Under the two assumptions that neutral particle scattering distribution and aiming errors have a circular Gaussian distributions that neutral particle scattering distribution and aiming errors have a circular Gaussian distribution respectively, an exact probability distribution of neutral particles vecomes a Poisson-power function distribution. We study and prove some properties, such as limiting distribution, unimodality, stochastical ordering, computational recursion fornula, of this distribution. We also prove monotone likelihood ratio(MLR) property of this distribution. Its MLR property can be used to find a criteria for the hypothesis testing problem.

  • PDF

An Indoor Pose Estimation System Based on Recognition of Circular Ring Patterns (원형 링 패턴 인식에 기반한 실내용 자세추정 시스템)

  • Kim, Heon-Hui;Ha, Yun-Su
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.36 no.4
    • /
    • pp.512-519
    • /
    • 2012
  • This paper proposes a 3-D pose (positions and orientations) estimation system based on the recognition of circular ring patterns. To deal with monocular vision-based pose estimation problem, we specially design a circular ring pattern that has a simplicity merit in view of object recognition. A pose estimation procedure is described in detail, which utilizes the geometric transformation of a circular ring pattern in 2-D perspective projection space. The proposed method is evaluated through the analysis of accuracy and precision with respect to 3-D pose estimation of a quadrotor-type vehicle in 3-D space.

Approximate Interpolator for Direct Fourier Reconstruction in Diffraction Tomography (회절 단층법에서 직접 푸리에 재구성을 위한 근사적 보간 함수에 관한 연구)

  • Lee, Moon Ho;Lim, Young Seok
    • Journal of the Korean Institute of Telematics and Electronics
    • /
    • v.24 no.1
    • /
    • pp.167-172
    • /
    • 1987
  • In this paper, the interpolation schemes for Direct Fourier Reconstruction in Diffraction Tomography are discussed. The interpolator using circular sampling theorem is modified so that the reconstructed image may be closer to original object than those produced with other interpolators. Reconstructed images obtained by computer simulations with several interpolators including that derived in this paper are compared to original object: two concentric cylinders.

  • PDF

The Effects of Object Size and Travel Distance on Human Speed Perception (물체의 크기와 이동거리에 따른 속도감 변화)

  • Park, Kyung-Soo;Choi, Jeong-A;Lee, Eun-Hye
    • Journal of the Ergonomics Society of Korea
    • /
    • v.24 no.2
    • /
    • pp.51-56
    • /
    • 2005
  • Human perceptional speed is different from its real speed. There is lack of research that the perceptional speed is different from real speed in 2-dimension, because most research of speed perception has concentrated on points and lines. This research investigates the effects of object size on speed perception. In this research, we used 2-D circular objects of the different size, 0.9, 1.8 and $3.6^{\circ}$. The objects moved 9.0, 13.5 and $18.0^{\circ}$ with three different speeds, 6.0, 9.0 and $18.0^{\circ}$/s. Six participants were exposed to the environment with standard scene(size: $1.8^{\circ}$, speed: $9.0^{\circ}$/s and travel distance: $13.5^{\circ}$). After the first scene, another scene in which the object had changed to different sizes, speeds and distances, was shown to the participants. A magnitude estimation method was used to construct a scale of the perceived speed level. The relationship between the perceived and the actual speed level was explained by Stevens's power law that the value was 0.978 with the exponent of 0.992. The size of object had an effect on the speed perception but travel distance was not. The perceptional speed of bigger object was lower than of smaller object. It showed that the degrees of perceptional speed decreased as size of object increased.

Active Calibration of the Robot/camera Pose using Cylindrical Objects (원형 물체를 이용한 로봇/카메라 자세의 능동보정)

  • 한만용;김병화;김국헌;이장명
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.5 no.3
    • /
    • pp.314-323
    • /
    • 1999
  • This paper introduces a methodology of active calibration of a camera pose (orientation and position) using the images of cylindrical objects that are going to be manipulated. This active calibration method is different from the passive calibration where a specific pattern needs to be located at a certain position. In the active calibration, a camera attached on the robot captures images of objects that are going to be manipulated. That is, the prespecified position and orientation data of the cylindrical object are transformed into the camera pose through the two consecutive image frames. An ellipse can be extracted from each image frame, which is defined as a circular-feature matrix. Therefore, two circular-feature matrices and motion parameters between the two ellipses are enough for the active calibration process. This active calibration scheme is very effective for the precise control of a mobile/task robot that needs to be calibrated dynamically. To verify the effectiveness of active calibration, fundamental experiments are peformed.

  • PDF

VORTEX-INDUCED VIBRATION SIMULATION OF MULTIPLE CIRCULAR CYLINDERS IN LOW REYNOLDS NUMBER FLOWS USING CARTESIAN MESHES (직교 격자를 이용한 저 레이놀즈 수 유동장내 다중 배치된 실린더의 와유기 진동 해석)

  • Han, Myung-Ryoon;Ahn, Hyung-Teak
    • Journal of computational fluids engineering
    • /
    • v.16 no.1
    • /
    • pp.73-82
    • /
    • 2011
  • In this paper, the vortex-induced vibration of circular cylinders is studied using the immersed boundary method on the Cartesian mesh. The Reynolds numbers considered is from 100 to 200. Using the configuration of tendemly arranged multiple circular cylinders, the vortex shedding behind of the cylinders and their flow-induced motion are investigated. The staggered MAC grid arrangement, which is the typical grid system for the incompressible flow on the Cartesian meshes, is utilized. Pressure correction method is applied for solving the divergence-free incompressible velocity field. The body motion is described by immersed boundary technique that has advantages for moving object on the fixed computational domain. It is also discussed for the computational noise in hydrodynamic forces when body motion is represented by the immersed boundary method. The Predictor/Corrector method is used for simulating the nonlinear response of the elastically mounted cylinder excited by vortex-shedding.

A robust center estimation of the circular parts based on the weighted circle chords (가중치가 부가된 현들을 이용한 원형부품 중심위치의 강건한 추정)

  • 성효경;최흥문
    • Journal of the Korean Institute of Telematics and Electronics C
    • /
    • v.34C no.10
    • /
    • pp.51-58
    • /
    • 1997
  • In this paper, a technique ot estimate center positions of the circular parts under noisy condition is presented. The circle chords are segmented from the circle with successively varying angle and weighted to reduce the center estimation errors effected by the orientations of the circle chords. The weighting factors for variable length chords are adaptively detemined according to the error contribution of each chord in center estimation. Robust estimation of the center positions of the circular parts are possible even though the edge informations are partially contaminated by the non-uniform lighting or the background textures. Computer simulations for several images which are obtained for same object under real environment y camera, show that the proposed techniqeu yields 1.85 and 2.77 of estimated error-distribution for center position and radius in mean square error, that the proposed has more robust estimation than those of the conventional methods.

  • PDF

The Behavior of Local Buckling for Steel Circular Tubes Subject to Cyclic Axial Loads (반복 축하중을 받아 국부좌굴을 수반하는 원형강관 부재의 복원력 특성)

  • Lee Sang-Ju;Lee Dong-Woo;Han Sang-Eul
    • Proceedings of the Computational Structural Engineering Institute Conference
    • /
    • 2006.04a
    • /
    • pp.347-354
    • /
    • 2006
  • In this paper, we work with steel circular tubes and propose analysis model which can consider local buckling that it has an effect on failure of steel structures and induce the relation between loading and deformation. First of all, in respect to axial symmetry local buckling, which is simplest case, elasto-plastic behavior acting only axial loads is object Therefore, it suggests analysis model for axial symmetry local buckling. And that is explainable the process from increasing internal force to decreasing passing maximum internal force. Besides, we induce the relation between the axial force and axial deformation.

  • PDF

A Study on the Flow Loss for Sudden Expansion and Contraction Part of Circular Pipe Nozzle (원형단면 노즐의 급확대 축소부를 통한 유동손실에 대한 연구)

  • 고영하
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.24 no.6
    • /
    • pp.89-95
    • /
    • 2000
  • To obtain an exact flow loss in piping systems is very important in the face of efficiency anticipation and work control of plant. The object of this study is to get the flow loss through the experiment for sudden expansion and contraction part of circular pipe nozzle. The experiment in this study is performed after getting the flow loss factor for sudden expansion and contraction through preliminary experiments. It is confirmed that the results of this study agreed with the approximated equation of Ikeda and Matsuo. It is proved that flow loss factor ${\zeta}_3$for sudden expansion and contraction part of circular pipe is dependent on $L/D_1$in these experimental conditions.

  • PDF