• Title/Summary/Keyword: Circuit Model Parameter

Search Result 215, Processing Time 0.024 seconds

Parameter Identification of 3R-C Equivalent Circuit Model Based on Full Life Cycle Database

  • Che, Yanbo;Jia, Jingjing;Yang, Yuexin;Wang, Shaohui;He, Wei
    • Journal of Electrical Engineering and Technology
    • /
    • v.13 no.4
    • /
    • pp.1759-1768
    • /
    • 2018
  • The energy density, power density and ohm resistance of battery change significantly as results of battery aging, which lead to decrease in the accuracy of the equivalent model. A parameter identification method of the equivale6nt circuit model with 3 R-C branches based on the test database of battery life cycle is proposed in this paper. This database is built on the basis of experiments such as updating of available capacity, charging and discharging tests at different rates and relaxation characteristics tests. It can realize regular update and calibration of key parameters like SOH, so as to ensure the reliability of parameters identified. Taking SOH, SOC and T as independent variables, lookup table method is adopted to set initial value for the parameter matrix. Meanwhile, in order to ensure the validity of the model, the least square method based on variable forgetting factor is adopted for optimizing to complete the identification of equivalent model parameters. By comparing the simulation data with measured data for charging and discharging experiments of Li-ion battery, the effectiveness of the full life cycle database and the model are verified.

A Review of Li-ion Battery Equivalent Circuit Models

  • Zhang, Xiaoqiang;Zhang, Weiping;Lei, Geyang
    • Transactions on Electrical and Electronic Materials
    • /
    • v.17 no.6
    • /
    • pp.311-316
    • /
    • 2016
  • Batteries are critical components of electric vehicles and energy storage systems. The connection of a battery to the power grid for charge and discharge greatly affects energy storage. Therefore, an accurate and easy-to-observe battery model should be established to achieve systematic design, simulation, and SOC (state of charge) estimations. In this review, several equivalent circuit models of representative significance are explained, and their respective advantages and disadvantages are compared to determine and outline their reasonable applications to Li-ion batteries. Numerous commonly used model parameter identification principles are summarized as well, and basic model verification methods are briefly introduced for the convenient use of such models.

Equivalent Circuit Model of Glucose Kinetics (생체내 포도당 동태의 등가회로모델)

  • Yun, Jang-H.;Kim, Min-Chong
    • Journal of Biomedical Engineering Research
    • /
    • v.2 no.1
    • /
    • pp.31-38
    • /
    • 1981
  • The objective of the present study was to develop an equivalent circuit model of glucose kinetics including the hepatic glucose balance functions which were neglected in the previous compartmental models. Using this circuit model, the insulin resistivity parameter and hepatic glucose sensitivity parameter were estimated in optimal fitting of the model based data of glucose and insulin concentration to the reported clinical intravenous glucose tolerance test(IVGTT) data in normal and diabetic subjects. The addition of the hepatic function in the model has improved the overall performance of the simulation. Also, the computed tissue insulin resistivity and the hepatic glucose sensitivity are shown to be significant in distinguishin four clinical groups of normal and diabetic groups.

  • PDF

Equivalent Circuit Model for Four Port Connector System (4포트 커넥터 시스템의 등가회로 변환에 관한 연구)

  • Shim, Min-Kyu;Kim, Jong-Min;Nah, Wan-Soo
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.56 no.6
    • /
    • pp.1105-1110
    • /
    • 2007
  • This paper describes an equivalent circuit modeling of 4-port connector system. A coupled transmission line was designed and fabricated, mimicking a 4-port connector system, and then S-parameters were measured using 4 port VNA (Vector Network Analyzer). The S-parameters from measurement and from Full-wave simulator coincided quite nice. By using these S parameters, an equivalent circuit parameters for a 4-port system was obtained. The time domain response from the equivalent circuit model matched to the signals, which was measured using TDR(Time Domain Reflectometry) meter. We were also convinced that there should be enough bandwidth to get a meaningful time domain result from Fourier inverse transformation of the S parameters. In addition, we applied the conversion algorithm to the 4-port connector system, which calculates the S-parameters of a 4 port system using the data from a 2-port VNA with the other ports open. Comparison of the two data, one from measurement and the other one from the conversion algorithm, was made in this manuscript.

Silicon Substrate Coupling Modeling, Analysis, and Substrate Parameter Extraction Method for RF Circuit Design (RF 회로 설계를 위한 실리콘 기판 커플링 모델링, 해석 및 기판 파라미터 추출)

  • Jin, Woo-Jin;Eo, Yung-Seon;Shim, Jong-In
    • Journal of the Institute of Electronics Engineers of Korea TC
    • /
    • v.38 no.12
    • /
    • pp.49-57
    • /
    • 2001
  • In this paper, equivalent circuit model and novel model parameter extraction method of a silicon(Si) substrate are presented. Substrate coupling through Si-substrate is quantitatively investigated by analyzing equivalent circuit with operating frequency and characteristic frequencies (i.e., pole and zero frequency) of a system. For the experimental verification of the equivalent circuit and parameter extraction method, test patterns are designed and fabricated in standard CMOS technology with various isolation distances, substrate resistivity, and guard-ring structures. Then, these are measured in l00MHz-20GHz frequency range by using vector network analyzer. It is shown that the equivalent-circuit-based HSPICE simulation results using extracted parameters have excellent agreement with the experimental results. Thus, the proposed equivalent circuit and parameter extraction methodology can be usefully employed in mixed-signal circuit design and verification of a circuit performance.

  • PDF

Simulated Analysis for the Transient Impedance Behaviors of Counterpoises Subjected to the Impulsive Currents (임펄스전류에 의한 매설지선의 과도임피던스특성에 대한 모의해석)

  • Joe, Jeong-Hyeon;Lee, Bok-Hee
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.58 no.10
    • /
    • pp.1861-1868
    • /
    • 2009
  • A ground electrode subjected to lightning surge current shows the transient impedance behaviors. The ground electrode for protection against lightning should be evaluated in view of the transient grounding impedance and conventional grounding impedance, not ground resistance. The transient impedance characteristics of ground electrodes are influenced by the shape of ground electrode and the soil characteristics, as well as the waveform of lightning surge current. In order to propose a simulation method of analyzing the transient impedance characteristics of the grounding system in practical use, this paper suggests a theoretical analysis method of distributed parameter circuit model to simulate the transient impedance characteristics of counterpoise subjected to lightning surge current. EMTP and Matlab programs were employed to compute the transient grounding impedances of three counterpoises with different lengths. As a consequence, the simulated results using the proposed distributed parameter circuit model are in good agreement with the measured results.

Enhanced Equivalent Circuit Modeling for Li-ion Battery Using Recursive Parameter Correction

  • Ko, Sung-Tae;Ahn, Jung-Hoon;Lee, Byoung Kuk
    • Journal of Electrical Engineering and Technology
    • /
    • v.13 no.3
    • /
    • pp.1147-1155
    • /
    • 2018
  • This paper presents an improved method to determine the internal parameters for improving accuracy of a lithium ion battery equivalent circuit model. Conventional methods for the parameter estimation directly using the curve fitting results generate the phenomenon to be incorrect due to the influence of the internal capacitive impedance. To solve this phenomenon, simple correction procedure with transient state analysis is proposed and added to the parameter estimation method. Furthermore, conventional dynamic equation for correction is enhanced with advanced RC impedance dynamic equation so that the proposed modeling results describe the battery dynamic characteristics more exactly. The improved accuracy of the battery model by the proposed modeling method is verified by single cell experiments compared to the other type of models.

Analysis for the impulsive impedance of counterpoise (매설지선의 임펄스임피던스의 해석)

  • Joe, Jeong-Hyeon;Kim, Jong-Ho;Beak, Young-Hwan;Kim, Dong-Seong;Lee, Gang-Su;Kim, Ki-Bok;Lee, Bok-Hee
    • Proceedings of the Korean Institute of IIIuminating and Electrical Installation Engineers Conference
    • /
    • 2009.05a
    • /
    • pp.88-91
    • /
    • 2009
  • For lightning currents, a grounding system shows the transient grounding impedance characteristics. A grounding system for protection against lightning should be evaluated by the transient grounding impedance, not it's ground resistance. The transient grounding impedance varies with the shape of ground electrode and earth characteristics as well as the waveform of lightning surge current. For the analysis and practical use of transient grounding impedance, the characteristics of transient grounding impedance should be analyzed theoretically and this paper suggests the theoretical analysis for the transient grounding impedance of counterpoise by using the distributed parameter circuit model. EMTP and Matlab are used to simulate the distributed parameter circuit model of counterpoise and the adequacy of the distributed parameter model of counterpoise is examined by comparing the simulated results with the measured results.

  • PDF

Investigations on the Optimal Support Vector Machine Classifiers for Predicting Design Feasibility in Analog Circuit Optimization

  • Lee, Jiho;Kim, Jaeha
    • JSTS:Journal of Semiconductor Technology and Science
    • /
    • v.15 no.5
    • /
    • pp.437-444
    • /
    • 2015
  • In simulation-based circuit optimization, many simulation runs may be wasted while evaluating infeasible designs, i.e. the designs that do not meet the constraints. To avoid such a waste, this paper investigates the use of support vector machine (SVM) classifiers in predicting the design's feasibility prior to simulation and the optimal selection of the SVM parameters, namely, the Gaussian kernel shape parameter ${\gamma}$ and the misclassification penalty parameter C. These parameters affect the complexity as well as the accuracy of the model that SVM represents. For instance, the higher ${\gamma}$ is good for detailed modeling and the higher C is good for rejecting noise in the training set. However, our empirical study shows that a low ${\gamma}$ value is preferable due to the high spatial correlation among the circuit design candidates while C has negligible impacts due to the smooth and clean constraint boundaries of most circuit designs. The experimental results with an LC-tank oscillator example show that an optimal selection of these parameters can improve the prediction accuracy from 80 to 98% and model complexity by $10{\times}$.

Method for High Frequency Modeling of Transformers Using the S-Parameter (S-Parameter를 이용한 변압기의 고주파 모델링 기법)

  • Jung, Hyeonjong;Yoon, Seok;Kim, Yuseon;Bae, Seok;Lim, Yeongseog
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.29 no.9
    • /
    • pp.677-684
    • /
    • 2018
  • In this paper, we propose a method for high-frequency modeling of transformers using the S-parameter. The open and short circuits of the primary and secondary sides were configured, and the reflection coefficient in each circuit was measured using a vector network analyzer. The equivalent circuit elements were extracted from the measured results to model the high-frequency equivalent circuit, and the validity of the method was verified by comparing the measured S-parameters in a 2-port network with the simulation results.