• Title/Summary/Keyword: Chromate Coating

Search Result 31, Processing Time 0.034 seconds

Optimal Aluminizing Coating on Incoloy 909 (Incoloy 909 합금의 최적 알루미나이징 확산 코팅)

  • Kwon, S.W.;Yoon, J.H.;Joo, Y.K.;Cho, T.Y.;Ahn, J.S.;Park, B.K.
    • Journal of the Korean institute of surface engineering
    • /
    • v.40 no.4
    • /
    • pp.175-179
    • /
    • 2007
  • An Fe-Ni-Co based superalloy Incoloy 909 (Incoloy 909) has been used for gas turbine engine component material. This alloy is susceptible to high temperature oxidation and corrosion because of the absence of corrosion resistant Cr. For the improvement of durability of the component of Incoloy 909 aluminizing-chromate coating by pack cementation process has been investigated at relatively low temperature of about $550^{\circ}C$ to protect the surface microstructure and properties of Incoloy 909 substrate. As a previous study to aluminizing-chromate coating by pack cementation of Incoloy 909, the optimal aluminizing process has been investigated. The size effects of source Al powder and inert filler $Al_O_3$ powder and activator selection have been studied. And the dependence of coating growth rate on aluminizing temperature and time has also been studied. The optimal aluminizing process for the coating growth rate is that the mixing ratio of source Al powder, activator $NH_4Cl$ and filler $Al_O_3$ are 80%, 1% and 19% respectively at aluminizing temperature $552^{\circ}C$ and time 20 hours.

Replacements for Chromate Pigments in Anticorrosion Primers for Aluminum Alloys

  • Yin, Zhangzhang;Ooij, Wim van;Puomi, Paula
    • Corrosion Science and Technology
    • /
    • v.6 no.4
    • /
    • pp.206-210
    • /
    • 2007
  • Aerospace aluminum alloys such as Al alloy 2024-T3 and 7075-T6 are subject to localized corrosion due the existence of intermetallics containing Cu, Mg or Zn. Chromate is currently widely used in the aerospace industry as the corrosion inhibitor for these alloys. However, chromate needs to be replaced due to its strong carcinogenicity. In this study, an extensive pigment screening has been performed to find replacements for chromates. Different categories of inhibitors were evaluated by immersion tests, DC polarization tests and other methods. Phosphates, zinc salts, cerium salts, vanadates and benzotriazole were found to be effective inhibitors for AA7075. Among those inhibitors, zinc phosphate was found to be the most effective in our novel, silane-based, one-step aqueous primer system. The performance of this primer is comparable to that of currently used chromate primers in accelerated corrosion tests, while it is completely chromate-free and its VOC is about 80% less than that of current primers. Studies by SEM/EDS showed that the unique structure of the superprimer accounts for the strong anti-corrosion performance of the zinc phosphate pigment. The self-assembled stratified double-layer structure of the superprimer is characterized by a less-penetrable hydrophobic layer at the top and a hydrophilic layer accommodating the inhibitors underneath. The top layer functions as the physical barrier against water ingress, while the lower layer functions as a reservoirfor the inhibitor, which is leached out only if the coating is damaged by a scratch or scribe. The presence of a silane in the primer further improves the adhesion and anti-corrosion performance of the primer.

Development of anti-corrosive coating technique for alloy plated steel sheet using silane based organic-inorganic hybrid materials (Silane계 유무기 하이브리드 적용 합금도금강판 내식성 향상 코팅 기술 개발)

  • Park, Jongwon;Lee, Kyunghwang;Park, Byungkyu;Hong, Shinhyub
    • Corrosion Science and Technology
    • /
    • v.12 no.6
    • /
    • pp.295-303
    • /
    • 2013
  • Silane surface treatments have been developed as an alternative for toxic and carcinogenic chromate-based treatments for years. It is consistently observed that ultra-thin films offer excellent corrosion protection as well as paint adhesion to metals. The silane performance is comparable to, or in some cases better than, that of chromate layers. Based on the tetra-ethylorthosilicate(TEOS) and methlyl trieethoxysilane(MTES), inorganic sol was synthesized and formed hybrid networks with $SiO_2$ nano particle and polypropylene glycol(PPG) on Zn alloyed steel surface. According to SST results, addition of 10nm and 50nm $SiO_2$ nanoparticle in synthesized solution improved anti-corrosion property by its shear stress relaxation effect during curing process. Also, SST results were shown that anti-corrosive property was affected by the amounts of organic compounds.

Environment-friendly Trivalent Chromate Treatment for Zn Electroplating (아연도금용 친환경 3가 크로메이트 표면처리기술)

  • Kim, Soo Won;Lee, Chul Tae
    • Applied Chemistry for Engineering
    • /
    • v.17 no.5
    • /
    • pp.433-442
    • /
    • 2006
  • Hexavalent chromium passivation, as very effective anti-corrosion method, can not be used in the field of surface treatment for metal, any more. Throughout the world, this regulations which was applied to automotive industries will be extended to all industries including electronics industries in the near future. Therefore a new anti-corrosion method should be established without delay, and trivalent chromium passivation as an alternatives replace the hexavalent chromium passivation for the time being. This paper gives an overview of the currently available trivalent chromium passivation processes, and then it attempts to give an insight to develop a more effective trivalent chromium conversion coating process for possible substitution of the hexavalent chromium passivation process.

Development of the Limit Switch Box for a Ship and Its Performance Evaluation against Salt Water

  • Lee, Seung-Heui;Go, Seok-Jo;Lee, Min-Cheol;Kim, Chang-Dong
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2005.06a
    • /
    • pp.1334-1338
    • /
    • 2005
  • A limit switch box is used for an indicator of a valve actuator. This device indicates an opening and closing of a valve or a throttle in the valve actuator. In a ship, equipments require safety and robustness because of a rough environment and a specific condition during a voyage. However, the limit switch box has been used in an indoor environment generally. This study developed a new limit switch box which can be used at an outdoor environment. This study designed the new limit switch box. The housing of the limit switch box was made by an aluminum die cast method with surface painting after anodizing or chromate coating. In order to evaluate the endurance of the housing, the endurance tests against salt water have been conducted. Experiment results showed that the proposed device provides a reliable performance against salt water.

  • PDF

Corrosion Resistance of the Roll Formed Steel Bolts with the Various Types of Coating Methods (1) (다양한 코팅 방법에 따른 전조한 강 볼트의 내부식성 (1))

  • Mamatov, S.;Hamrakulov, B.;Son, Y.H.;Kim, I.
    • Transactions of Materials Processing
    • /
    • v.28 no.2
    • /
    • pp.71-76
    • /
    • 2019
  • Corrosion resistance is one of the essential properties required in steel bolts. The various types of coatings are used to improve the corrosion resistance of steel bolts. But, roll formed, subsequently Zn alloy electrodeposited and top coated steel bolt easily takes place the white storage stain or white rust under high humidity condition. To investigate the corrosion resistance of roll formed and subsequently the various types of coated steel bolts, their polarization curves were measured by potentio-dynamic tester in this study. Based on the measured polarization curves, the more times of chromate and top coating on roll formed steel bolt, the higher corrosion resistance was shown. The roll formed steel bolt, which was Zn-Ni electro-deposited, two times chromated, one time inorganic top coated, one time organic top coated and annealed, showed the best corrosion resistance.

Development of chemical conversion coating technology by environment friendly method for Zn electroplated steel (아연 전기 도금 강의 환경친화적인 화성처리 기술 개발)

  • Kim, Seong-Jong;Kim, Jeong-Il;Jang, Seok-Ki
    • Proceedings of the Korean Society of Marine Engineers Conference
    • /
    • 2006.06a
    • /
    • pp.271-272
    • /
    • 2006
  • Zinc confers high corrosion resistance by acting as a sacrificial anode, and a zinc coating improves the appearance of steel. Chromate conversion coating (CCC) films are still one of the most efficient surface treatments for steel. Although such films can self-repair via the dissolution of Cr(VI), dissolved Cr(VI) have adverse effects on humans, and the environment. Therefore, we examined the corrosion protection property and morphology of colloidal silica conversion films as an alternative to CCC films. The corrosion behavior was investigated in 3% NaCl solution using electrochemical techniques, including electrochemical impedance spectroscopy, open circuit potential, and the salt spray test(SST). Corrosion was implied by the appearance of red rust on the specimen surface. In corrosion resistance at 3% NaCl solution, red rust appeared at 15-20, 55-70, and 83-98 days on Zn-electroplated steel, colloidal silica conversion-coated specimens, and CCC-coated specimens, respectively. In the salt spray test, the colloidal silica film provided better corrosion protection than CCC films, i.e., red rust appeared at 96 hours on the Zn-electroplated steel sheet, at 432 hours with the CCC films, and at 888 hours with silica conversion coating.

  • PDF

The corrosion comparision of the bolt of zinc frake coating in line test (인라인에서의 아연말코팅 볼트의 내식성 비교)

  • Lee, Jun-Gyun;Jo, Hong-Gwan;Gang, Mi-Jeong;U, Dong-Jin;Kim, Seong-Hyeon;Kim, Seung-Jin
    • Proceedings of the Korean Institute of Surface Engineering Conference
    • /
    • 2011.05a
    • /
    • pp.147-148
    • /
    • 2011
  • 아연말 코팅은 희생부식에 의한 기재보호의 수단으로서 사용되고 있으며, 현재 볼트의 절반을 차지하고 있는 주요 공정이라 할 수 있다. 본 연구에서는 실제 작업현장에서 사용되는 아연말 코팅액에 3가 chromate액을 배합하는 공정연구등 다양한 공정시스템을 적용하여 생산된 시제품들을 기존 볼트와의 내식성을 상호 비교하였다.

  • PDF

An Electrochemical Study on the Corrosion Resistance Improvement of Galvanizing Steel by Dipping to Solution with Inhibitor (인히비터 첨가용액의 침지에 의한 용융아연도금 강판의 내식성 개선에 관한 전기화학적 연구)

  • Moon, Kyung-Man;Cho, Hwang-Rae;Kang, Tae-Young;Lee, Myung-Hoon;Kim, Yun-Hae
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.31 no.2
    • /
    • pp.173-181
    • /
    • 2007
  • Recently, galvanizing method is predominantly being used not only a economical point of view but also due to it s stability and long life. For example, guard rail of high way, all kinds of structures for ship etc. were protected with galvanizing and demand of galvanized structural materials was being increased with more and more. However, galvanized structures were inevitably being deteriorated with time eventually because they were corroded with solution of galvanizing film and exfoliation of it s film in the present severe corrosive environment. Therefore, it is necessary to improve the corrosion resistance of the galvanizing film through various methods such as variation of chemical composition of galvanizing bath, chromate treatment and coating treatment. In this study, three test specimens such as pure galvanizing, galvarium, and chromate treatment were submerged at tap water with inhibitor addition. And the effect of their corrosion resistance improvement was comparatively investigated with electrochemical method. Corrosion current density of the galvanized steel was the largest among three specimens, however, the galvarium steel showed the lowest corrosion current density. Futhermore, these three kinds of test specimens indicated considerably excellent corrosion resistance by dipped at tap water with inhibitor addition. Especially, the galvanized steel showed the best effect of corrosion resistance improvement than other test specimens.

Anticorrosive Ability and Mechanism of Hydroxyapatite Pigment

  • Park, J.H.;Lee, G.D.;Nishikata, A.;Tsuru, T.
    • Corrosion Science and Technology
    • /
    • v.4 no.1
    • /
    • pp.15-18
    • /
    • 2005
  • Hydroxyapatite(HAp) was synthesized using the waste sludge from semiconductor process and used as an anticorrosive pigment. The water absorption of coating pigmented with anticorrosive pigment and the corrosion at interface between coating and substrate were monitored using AC impedance techniques. The anticorrosive performance of HAp was compared with those of red lead(RL) and zinc potassium chromate(ZPC), which have been known as representative anticorrosive pigments. The amount of absorbed water in ZPC- and HAp- pigmented coatings was much higher compared to that in RL-pigmented and unpigmented film. However, it seems that the water absorbed into HAp- or ZPC-pigmented film is beneficial to anticorrosive function. The anticorrosive performance of HAp is superior or at least comparable to those of ZPC and RL. The excellent anticorrosive properties of HAp can be explained by its passivating ability, caused by the reaction of the soluble component of HAp with Fe to form iron phosphate in the presence of water.