• Title/Summary/Keyword: Chongju

Search Result 778, Processing Time 0.033 seconds

CAUSTIC AND IMAGE PROPERTIES OF GRAVITATIONALLY BENDING LIGHT RAYS

  • Chang, Kyong-Ae
    • Journal of The Korean Astronomical Society
    • /
    • v.19 no.2
    • /
    • pp.63-68
    • /
    • 1986
  • In this paper we deal with the orientation and the deformation of the circular light bundle passing in a static bounded gravitational field. The properties of caustic of the gravitational lens are discussed.

  • PDF

ASTIGMATIC PROPERTY OF N-BODY GRAVITATIONAL LENS

  • Chang, Kyong-Ae
    • Journal of The Korean Astronomical Society
    • /
    • v.19 no.1
    • /
    • pp.11-14
    • /
    • 1986
  • It is shown in this paper that the astigmatic property of single gravitational lens in static bounded gravitational field can be retained, if n-gravitating body as a whole acts simultaneously as gravitational lens.

  • PDF

Mechanical Properties of High Performance Concrete with Material for Lateral Confinement (횡구속재 변화에 따른 고성능 콘크리트의 역학적 특성)

  • Han, Cheon-Goo;Jung, Duk-Woo;Jin, En-Hao
    • Journal of the Korea Concrete Institute
    • /
    • v.15 no.1
    • /
    • pp.110-116
    • /
    • 2003
  • Recently, as concrete structure becomes high rise and large scaled tendency, demands for high performance concrete such as high strength, high fluidity and high durability has been increased. Even though high performance concrete performs high strength, workability and durability, compared to with those of normal concrete, it is more brittle than normal concrete. Accordingly, this paper is intended to improve toughness and compressive strength through investigating the mechanical properties of the high performance concrete confined with metal lath, glass fiber and carbon fiber laterally in the case of 30% and 40% of W/B. According to the results, the compressive strength increases in order of metal lath, carbon fiber and glass fiber. Considering strain-stress curve with the kinds of material for lateral confinement, while brittleness failure occurs in plain concrete just after maximum load, it is improved in some degree in confined concrete due to increase of the strain by increase of toughness. Elastic modulus increases slightly in case of confined concrete, like the compressing strength.