• Title/Summary/Keyword: Cholesteric

Search Result 107, Processing Time 0.021 seconds

Thermotropic Behavior of Hydroxypropyl Chitosans Bearing Cholesteryl and Acryloyl Groups (콜레스테릴과 아크릴로일 그룹을 지닌 하이드록시프로필 키토산들의 열방성 거동)

  • 김장훈;정승용;마영대
    • Polymer(Korea)
    • /
    • v.28 no.1
    • /
    • pp.41-50
    • /
    • 2004
  • A new hydroxypropyl chitosan capable of forming a thermotropic liquid crystalline phase and two kinds of derivatives based on the hydroxypropyl chitosan (6-cholesteryloxycarbonylpentoxypropyl) chitosans (CHPCTs) and acrylic acid esters of CHPCT (CHPCTEs) were synthesized. The crosslinked films with liquid crystalline order were also prepared by photocrosslinking CHPCTE in mesophase. The liquid crystalline properties for all the samples and the swelling behavior of the crosslinked samples in acetone were investigated. In contrast with the hydroxypropyl chitosan, all the uncrosslinked cholesteryl-bearing samples farmed monotropic cholesteric phases with left-handed helicoidal structures and exhibited reflection colors over the full cholesteric range. This is the first report of a thermotropic cholesteric liquid crystalline chitosan derivative with reflection bands in the visible region. Both the optical pitches (λ$\_$m/'S) of CHPCT and CHPCTE decrease with temperature or with cholesteryl content at a given temperature. However, the λ$\_$m/ of CHPCT was larger than that of CHPCTE at the same temperature and at the same cholesteryl content. All the crosslinked samples did not display reflection colors, indicating that the cholesteric structure of CHPCTE significantly changes upon crosslinking. The two-dimentional anisotropic swelling characteristic of liquid crystalline networks was observed for all the crosslinked samples.

Thermotropic Liquid Crystalline Properties of Cholesteryloxycarbonated and (8-Cholesteryloxycarbonyl) heptanoated Disaccharides (콜레스테릴옥시카본화 그리고 (8-콜레스테릴옥시카보닐)헵타노화 이당류들의 열방성 액정 특성)

  • Jeong, Seung-Yong;Ma, Yung-Dae
    • Polymer(Korea)
    • /
    • v.31 no.1
    • /
    • pp.58-67
    • /
    • 2007
  • Fully cholesteryloxycarbonated and (8-cholesteryloxycarbonyl) heptanoated disaccharide derivatives were synthesized by reacting cellobiose, maltose, and lactose with cholesteryl chloroformate or 8- cholesteryloxycarbonylheptanoyl chloride, and their thermotropic liquid crystalline properties were investigated. All the cholesteryloxycarbonated derivatives (CH1DSs) formed enantiotropic cholesteric phases, whereas all the (8-cholesteryloxycarbonyl) heptanoated derivatives (CH8DSs) exhibited monotropic cholesteric phases with left-handed helicoidal structures whose optical pitches (${\lambda}m's$) decrease with increasing temperature. All the CH1DSs, contrast with the CH8DSs, did not display reflection colors over the full cholesteric range, suggesting that the helicoidal twisting power of the cholesteryl group highly depends on the length of the spacer joining the cholesteryl group to the disaccharide chain. The thermal stability and degree of order in the mesophase and the temperature dependence of the ${\lambda}m$ observed for EH8DSs were entirely different from those reported for the cholesterol-bearing dimers and triplet and the (8-cholesteryloxycarbonyl) heptanoated polysaccharide derivatives. The results were discussed in terms of the difference in the number of the mesogenic units per mole of repeating unit and the flexibility of the main chain.

Infulence of Spacer and Degree of Esterification on Thermotropic Liquid Crystalline Properties of Amyloses Bearing Cholesteryl Group (스페이서와 에스터화도가 콜레스테릴 그룹을 지닌 아밀로오스들의 열방성 액정 특성에 미치는 영향)

  • Jeong, Seung-Yong;Ma, Yung-Dae
    • Polymer(Korea)
    • /
    • v.31 no.4
    • /
    • pp.356-367
    • /
    • 2007
  • Three kinds of amylose derivatives such as: cholesteryloxycarbonated amyloses(CAMs) with degree of esterification(DE) ranging from 1.8 to 3, (6-cholesteryloxycarbonyl)pentanoated amyloses(PAMs) with DE ranging from 0.3 to 3, and fully cholesteryloxycarbonated PAMs(CPAMs) were synthesized, and their thermotropic liquid crystalline properties were investigated. CAMs with $DE{\geq}2.6$, PAM with DE=1.6 and all the CPAMs formed enantiotropic cholesteric phases, whereas PAM with $DE{\geq}2.2$ exhibited monotropic cholesteric phases. PAM with $DE{\geq}2.2$ and CPAMs with (6-cholesteryloxycarbonyl)pentanoyl DE (DS) more than 1.0 formed cholesteric phases with left-handed helical structures whose optical pitches (${\lambda}_{m'}s$) decrease with increasing temperature. However, the ${\lambda}_{m'}s$ of these samples decreased with increasing DS at the same temperature. On the other hand, CAMs, PAM with DE=1.6, and CPAM with DS=0.3 did not display reflection colors over the full cholesteric range, suggesting that the helicoidal twisting power of the cholesteryl group highly depends on the length of the spacer joining the cholesteryl group to the main chain and DS. The thermal stability and degree of order in the mesophase observed for the amylose derivatives highly depended on DE or DS. The results were discussed in terms of the difference ul the hydrogen bond, the internal plasticization, and the decoupling of the motion of side group with the main chain.

Thermotropic and Lyotropic Liquid Crystalline Behavior of N,O-Hydroxypropyl Chitosans (N,O-히드록시프로필 키토산들의 열방성과 유방성 액정 거동)

  • Kim, Hyo-Gap;Jung, Seung-Yong;Ma, Yung-Dae
    • Polymer(Korea)
    • /
    • v.36 no.3
    • /
    • pp.380-392
    • /
    • 2012
  • Four kinds of N,O-hydroxypropyl chitosans (HPCTOs) with degree of substitution(DS) and molar substitution (MS) ranging from 2.47 to 2.52 and 4.9 to 7.8, respectively were synthesized, and their molecular chracteristics and thermotropic and lyotropic liquid crystalline properties were investigated. MS was exceedingly larger than DS, showing that in the later stages of reaction, propylene oxide was preferentially added to the side chains rather than the main chain. All the derivatives formed thermotropic cholesteric phases. The glass and clearing temperatures were decreased with increasing MS. The optical pitches (${\lambda}_m$'s) of the thermotropic cholesteric phases increased with temperature. However, the ${\lambda}_m$'s of the derivatives at the same temperature increased with increasing MS. Solutions of HPCTOs in water, methanol, ethanol, acetic acid, and formic acid containing more than 30 wt% polymer also formed cholesteic phases whose ${\lambda}_m$'s decreased exponentially with increasing polymer concentration. The concentration dependence of ${\lambda}_m$ of HPCTO solutions, however, highly depended on the nature of the solvent and MS. The thermotropic and lyotropic mesophase properties of HPCTOs were significantly different from those reported for hydroxypropyl celluloses. The results indicate that the secondary amino group in the C-2 position plays an important role on the formation, stabilization, and temperature and concentration dependencies of ${\lambda}_m$ of the cholesteric mesophase.

Thermal and Optical Properties of Poly{1-(Cholesteryloxycarbonylalkanoyloxy)ethylene}s (폴리{1-(콜레스테릴옥시카보닐알카노일옥시)에틸렌}들의 열 및 광학 특성)

  • Jeong, Seung-Yong;Ma, Yung-Dae
    • Polymer(Korea)
    • /
    • v.33 no.2
    • /
    • pp.144-152
    • /
    • 2009
  • The thermal and optical properties of poly {1-(cholesteryloxycarbonylalkanoyloxy) ethylene}s (PCALEn, n=2$\sim$8,10, the number of methylene units in the spacer) were investigated. All of the homologues formed monotropic cholesteric phases with left-handed helical structures. PCALEn with n=2 or 10, in constrast with PCALEn with $3{\leq}n{\leq}8$, did not display reflection colors over the full cholesteric range, suggesting that the helical twisting power of the cholesteryl group highly depends on the length of the spacer connecting the cholesteryl group to the polyethylene chain. The glass transition temperatures decreased with increasing n. The isotropic-cholesteric phase transition temperatures decreased with increasing n up to 7 and showed an odd-even effect. However it became almost constant when n is more than 7. This behavior is rationalized in terms of the change in the average shape of the side chain on varing the parity of the spacer. This rationalization also accounts for the observed variation of the entropy gain for the clearing transition. The thermal stability and degree of order in the mesophase and the temperature dependence of the optical pitch observed for PCALEn were significantly different from those reported for cellulose tri(cholesteryloxycarbonyl)alkanoates. The results were discussed in terms of the differences in the chemical structure and flexibility of main chain and the number of the mesogenic units per repeating unit.

FLEXMatters;A Consortium for Production of Flexible Devices

  • West, John L.;Khan, Asad
    • 한국정보디스플레이학회:학술대회논문집
    • /
    • 2007.08a
    • /
    • pp.203-206
    • /
    • 2007
  • The FLEXMatters initiative is building a collaboration of companies and universities to develop and produce flexible devices. Kent Displays leads the production of flexible displays using their bistable cholesteric technology. The FLEXMatters members are collaborating to develop the flexible manufacturing process that will are common to a wide variety of devices.

  • PDF

Electro-controllable omni-directional laser emissions from a helical polymeric network composite film

  • Jang, Won-Gun;Park, Byoung-Choo;Kim, Min-A;Kim, Sun-Woong;Kim, Yun-Ki;Choi, Eun-Ha;Seo, Yoon-Ho;Cho, Guang-Sup;Kang, Seung-Oun;Takezoe, Hideo
    • 한국정보디스플레이학회:학술대회논문집
    • /
    • 2008.10a
    • /
    • pp.883-886
    • /
    • 2008
  • In optical information technology, an electro-controllable Photonic Band Gap (PBG) in a photonic crystal (PC) material is potentially useful for the manipulation of light. Despite a great deal of research on PBGs, the reliable use of electro-active PBG material systems is restricted to only a few cases because of the complex and limiting nature of the structures involved. Here, we propose a PBG system that uses a liquid crystal (LC) polymer composite. The composite is made of nematic LCs (NLCs) embedded in polymeric helical networks of photo-polymerized cholesteric LCs (CLCs). The composite film shows a large field-induced reversible color shift over 150 nm of the reflection band, due to the reorientational undulation of the helical axis, similar to the Helfrich effect.

  • PDF

Thermotropic Liquid Crystalline Properties of (8-Cholesteryloxycarbonyl)heptanoated Polysaccharides ((8-콜레스테릴옥시카보닐)헵타노화 다당류들의 열방성 액정 특성)

  • Jeong Seung-Yong;Ma Yung-Dae
    • Polymer(Korea)
    • /
    • v.30 no.4
    • /
    • pp.338-349
    • /
    • 2006
  • Fully or nearly fully(8-cholesteryloxycarbonyl)heptanoated polysaccharide derivatives were synthesized by reacting cellulose, amylose, chitosan, chitin, alginic acid, pullulan or amylopectin with (8-cholesteryloxycarbonyl)heptanoyl chloride (CH8C), and their thermotropic liquid crystalline behaviors were investigated. Like in the case of CH8C, all the polysaccharide derivatives formed monotropic cholesteric phases with left-handed helicoidal structures whose optical pitches $({\lambda_m}'s)$ decrease with increasing temperature. Amylopectin derivative also formed a monotropic cholesteric phase with lefthanded helicoidal structures but, in contrast with the other derivatives, did not display reflection colors over the full cholesteric range, suggesting that the helicoidal twisting power of the cholesteryl group highly depends on the branched structure in amylopectin. The thermal stability and degree of order in the mesophase, the magnitude of ${\lambda}_m$ at the same temperature, and the temperature dependence of the ${\lambda}_m$ observed for polysaccharide derivatives were entirely different from those reported for the polymers in which the cholesteryl groups are attached to flexible or semiflexible backbones through flexible spacers. The results were discussed in terms of the difference in the chemical structures of the main and side chains and flexibility of the main chain.

Thermotropic Liquid Crystalline Behavior of Aliphatic Acid Esters of N,O-Hydroxypropyl Chitosans (N,O-히드록시프로필 키토산 지방산 에스터들의 열방성 액정 거동)

  • Kim, Hyo Gap;Jung, Seung Yong;Ma, Yung Dae
    • Polymer(Korea)
    • /
    • v.37 no.3
    • /
    • pp.276-287
    • /
    • 2013
  • Two kinds of N,O-hydroxypropyl chitosans (HPCTOs) with degree of substitution (DS) and molar substitution (MS) ranging from 2.15 to 2.39 and 2.9 to 4.1, respectively, and five kinds of aliphatic acid esters of HPCTOs (HPCTOAms, m=0,2,4,7,9, the number of methylene units in aliphatic substituent) based on the HPCTOs were synthesized, and the thermotropic liquid crystalline properties of the derivatives were investigated. All the derivatives formed enantiotropic cholesteric phases whose optical pitches (${\lambda}_m$'s) increased with increasing temperature. However, the glass and clearing temperatures, the magnitude of ${\lambda}_m$ of the mesophase at the same temperature, and the temperature dependence of ${\lambda}_m$ of the investigated derivatives highly depended on MS and m. The thermotropic mesophase properties of HPCTOAms were significantly different from those reported for the aliphatic acid esters of hydroxypropyl celluloses. The results indicate that the secondary amino group in the C-2 position plays an important role in the thermal stabilization and temperature dependence of ${\lambda}_m$ of the cholesteric mesophase.