DOI QR코드

DOI QR Code

Thermotropic and Lyotropic Liquid Crystalline Behavior of N,O-Hydroxypropyl Chitosans

N,O-히드록시프로필 키토산들의 열방성과 유방성 액정 거동

  • Kim, Hyo-Gap (Center for Photofunctional Energy Materials, Dankook University) ;
  • Jung, Seung-Yong (Center for Photofunctional Energy Materials, Dankook University) ;
  • Ma, Yung-Dae (Center for Photofunctional Energy Materials, Dankook University)
  • 김효갑 (단국대학교 광 에너지 연구센터) ;
  • 정승용 (단국대학교 광 에너지 연구센터) ;
  • 마영대 (단국대학교 광 에너지 연구센터)
  • Received : 2012.02.06
  • Accepted : 2012.03.23
  • Published : 2012.05.25

Abstract

Four kinds of N,O-hydroxypropyl chitosans (HPCTOs) with degree of substitution(DS) and molar substitution (MS) ranging from 2.47 to 2.52 and 4.9 to 7.8, respectively were synthesized, and their molecular chracteristics and thermotropic and lyotropic liquid crystalline properties were investigated. MS was exceedingly larger than DS, showing that in the later stages of reaction, propylene oxide was preferentially added to the side chains rather than the main chain. All the derivatives formed thermotropic cholesteric phases. The glass and clearing temperatures were decreased with increasing MS. The optical pitches (${\lambda}_m$'s) of the thermotropic cholesteric phases increased with temperature. However, the ${\lambda}_m$'s of the derivatives at the same temperature increased with increasing MS. Solutions of HPCTOs in water, methanol, ethanol, acetic acid, and formic acid containing more than 30 wt% polymer also formed cholesteic phases whose ${\lambda}_m$'s decreased exponentially with increasing polymer concentration. The concentration dependence of ${\lambda}_m$ of HPCTO solutions, however, highly depended on the nature of the solvent and MS. The thermotropic and lyotropic mesophase properties of HPCTOs were significantly different from those reported for hydroxypropyl celluloses. The results indicate that the secondary amino group in the C-2 position plays an important role on the formation, stabilization, and temperature and concentration dependencies of ${\lambda}_m$ of the cholesteric mesophase.

치환도(DS) 그리고 몰치환도(MS)가 각각 2.47~2.52 그리고 4.9~7.8 범위에 있는 4 종류의 N,O-히드록시프로필 키토산들(HPCTOs)을 합성함과 동시에 이들의 분자특성과 열방성 및 유방성 특성을 검토하였다. MS는 DS에 비해 대단히 큰 경향을 나타냈다. 이러한 사실은 반응이 진행됨에 따라 프로필렌 옥사이드는 주사슬보다 곁사슬들에 우선적으로 부가됨을 시사한다. 모든 유도체들은 열방성 콜레스테릭 상들을 형성하였다. 유리 그리고 액정 상에서 액체 상으로의 전이 온도들은 MS가 증가함에 따라 낮아졌다. 열방성 콜레스테릭 상들의 광학피치들(${\lambda}_m$'s)은 온도가 상승함에 따라 증가하였다. 그러나 유도체들이 동일한 온도에서 나타내는 ${\lambda}_m$들은 MS가 증가함에 따라 증가하였다. 고분자의 농도가 30 wt% 이상인 HPCTO들의 물, 메탄올, 에탄올, 아세트산 그리고 포름산 용액들도 고분자의 농도가 증가함에 따라 ${\lambda}_m$이 지수 함수적으로 감소하는 콜레스테릭 상들을 형성하였다. 그러나 HPCTO 용액들의 ${\lambda}_m$의 농도의존성은 용매의 성질과 MS에 민감하게 의존하였다. HPCTO들의 열방성과 유방성 액정 상의 특성들은 히드록시프로필 셀룰로오스들에 대해 보고된 결과들에 비해 현저히 달랐다. 이러한 결과들은 C-2 위치에 존재하는 2차 아미노기가 콜레스테릭 상의 형성능, 안정성 그리고 ${\lambda}_m$의 온도와 농도의존성에 중요한 역할을 함을 시사한다.

Keywords

Acknowledgement

Supported by : 경기도 지역협력센터

References

  1. S.-Y. Jeong and Y.-D. Ma, Polymer(Korea), 33, 254 (2009).
  2. M. Muller and R. Zentel, Macromol. Chem. Phys., 201, 2055 (2000). https://doi.org/10.1002/1521-3935(20001001)201:15<2055::AID-MACP2055>3.0.CO;2-P
  3. P. L. Almeida, S. Kundu, J. L. Figueirinhas, and M. H. Godinho, Liq. Cryst., 35, 1345 (2008). https://doi.org/10.1080/02678290802604045
  4. P. L. Almeida, S. Kundu, D. Beja, J. Foneseca, J. L. Figueirinhas, and M. H. Godinho, Cellulose, 16, 427 (2009). https://doi.org/10.1007/s10570-008-9273-x
  5. S.-Y. Jeong, J.-H. Choi, and Y.-D. Ma, Polymer(Korea), 26, 523 (2002).
  6. J.-H. Kim, S.-Y. Jeong, and Y.-D. Ma, Polymer(Korea), 28, 92 (2004).
  7. M. H. Godinho, D. Filip, I. Costa, A.-L. Carvalho, J. L. Fingueirinhas, and E. M. Terentjev, Cellulose, 16, 199 (2009). https://doi.org/10.1007/s10570-008-9258-9
  8. M. F. Francis, M. Piredda, and F. M. Winnik, "Hydroxypropylcellulose in Oral Drug Delivery" in Polysaccharides for Drug Delivery and Pharmaceutical Applications, R. H. Marchessault, F. Ravenella, and X. X. Zhu, Editors, ACS Symposium Series 934, American Chemical Society, Washington, DC, Chap 3, p 57 (2006).
  9. K.-S. Kim and S.-J. Park, Macromol. Res., 19, 1121 (2011). https://doi.org/10.1007/s13233-011-1105-4
  10. X. Xia, S. Tang, X. Lu, and Z. Hu, Macromolecules, 36, 3695 (2003). https://doi.org/10.1021/ma0216728
  11. S.-Y. Jeong and Y.-D. Ma, Polymer(Korea), 32, 446 (2008).
  12. S. Suto and T. Kobayashi, J. Appl. Polym. Sci., 70, 1465 (1998). https://doi.org/10.1002/(SICI)1097-4628(19981121)70:8<1465::AID-APP5>3.0.CO;2-2
  13. S. Suto and N. Ui, J. Appl. Polym. Sci., 61, 2273 (1996). https://doi.org/10.1002/(SICI)1097-4628(19960926)61:13<2273::AID-APP5>3.0.CO;2-9
  14. S.-P. Rwei, M.-S. Lyu, P.-S. Wu, C.-H. Tseng, and H.-W. Huang, Cellulose, 16, 9 (2009). https://doi.org/10.1007/s10570-008-9250-4
  15. M. Terbojevich, A. Cosani, G. Conio, E. Marsano, and E. Bianchi, Carbohydr. Res., 209, 251 (1991). https://doi.org/10.1016/0008-6215(91)80161-F
  16. Y. M. Lee, S. S. Kim, S. J. Kim, Y. K. Sung, I. K. Kang, and T. I. Son, J. Korean Ind. Eng. Chem., 4, 403 (1993).
  17. S. J. Kim and Y. M. Lee, J. Korean Ind. Eng. Chem., 3, 516 (1992).
  18. Y.-D. Ma and K.-H. Kim, Polymer(Korea), 24, 418 (2000).
  19. J.-H. Kim, S.-Y. Jeong, and Y.-D. Ma, Polymer(Korea), 28, 41 (2004).
  20. K. Ogura, T. Kanamoto, T. Sannan, K. Tanaka, and Y. Iwakura, Proc. Int. Conference on Chitin and Chitosan, Japan, p 39 (1982).
  21. R. S. Werbowyj and D. G. Gray, Macromolecules, 17, 1512 (1984). https://doi.org/10.1021/ma00138a016
  22. S. Fortin and G. Charlet, Macromolecules, 22, 2286 (1989). https://doi.org/10.1021/ma00195a050
  23. K. Shimamura, K. Munemura, Y. Fukuda, T. Miyajima, Y. Okada, F. Yokoyama, K. Monobe, and T. Ikawa, "Structure and Optical Properties of Hydroxypropylcellulose Liquid Crystals" in Cellulose: Structural and Functional Aspects, J. F. Kennedy, G. O. Phillips, and P. A. Williams, Editors, Ellis Horwood, Chichester, Chap 52, p 397 (1989).
  24. L. Wang and Y. Huang, Macromolecules, 37, 303 (2004). https://doi.org/10.1021/ma0344893
  25. I. K. Park and Y. H. Park, J. Appl. Polym. Sci., 80, 2624 (2001). https://doi.org/10.1002/app.1374
  26. I. K. Park and Y. H. Park, J. Appl. Polym. Sci., 80, 2624 (2001). https://doi.org/10.1002/app.1374
  27. G. Lang, G. Maresch, H. Wendel, E. Konrad, H.-R. Lenz, and J. Titze, U.S. Pat. 4,780,310 (1988).
  28. K. Kimura, T. Shigemura, M. Kubo, and Y. Maru, Macromol. Chem., 186, 61 (1985). https://doi.org/10.1002/macp.1985.021860107
  29. S. Tokura, J. Yoshida, N. Nishi, and T. Hiraoki, Polym. J., 14, 527 (1982). https://doi.org/10.1295/polymj.14.527
  30. M. Hasegawa, A. Isogai, F. Onabe, and M. Usuda, J. Appl. Polym. Sci., 45, 1857 (1992). https://doi.org/10.1002/app.1992.070451020
  31. I. Quijada-Carrido, V. Iglesias-Gonzales, J. M. Mazon-Arechederra, and J. M. Barrales-Rienda, Carbohydr. Polym., 68, 173 (2007). https://doi.org/10.1016/j.carbpol.2006.07.025
  32. D. W. Jenkins and S. M. Hudson, Macromolecules, 35, 3413 (2002). https://doi.org/10.1021/ma011336b
  33. G. Maresch, T. Clausen, and G. Lang, "Liquid Crystalline Phases based on Chitosan and Its Derivatives" in Chitin and Chitosan: Sources, Chemistry, Biochemistry, Physical Properties and Applicarions. Proceedings of the 4th International Conference on Chitin and Chitosan, Norway, G. Skjak-Vraek, T. Anthosen, and P. Sandford, Editors, Elsevier Applied Science, London and New York, p 389 (1989).
  34. J. Rusig, M. H. Godinho, L. Varichon, P. Sixou, J. Denier, C. Filliatre, and A. F. Marins, J. Polym. Sci. Part B: Polym. Phys., 32, 1907 (1994). https://doi.org/10.1002/polb.1994.090321108
  35. S.-Y. Jeong, J.-H. Jeong, Y.-D. Ma, and Y. Tsujii, Polymer(Korea), 25, 279 (2001).
  36. S.-Y. Jeong and Y.-D. Ma, Polymer(Korea), 32, 169 (2008).
  37. S.-Y. Jeong and Y.-D. Ma, Polymer(Korea), 30, 338 (2006).
  38. S.-Y. Jeong and Y.-D. Ma, Polymer(Korea), 31, 37 (2007).
  39. T. Fukuda, Y. Tsujii, and T. Miyamoto, Macromol. Symp., 99, 257 (1995). https://doi.org/10.1002/masy.19950990127
  40. S. Chandrasekhar, Liquid Crystals, Cambridge University Press, Cambridge, Chap 4, p 213 (1992).
  41. J. Watanabe, M. Goto, and T. Nagase, Macromolecules, 20, 298 (1987).
  42. J. Watanabe and T. Nagase, Macromolecules, 21, 171 (1988). https://doi.org/10.1021/ma00179a034
  43. V. P. Shibaev, Ya. S. Freidzon, and G. S. Kostromin, Liquid Crystalline and Mesomorphic Polymers, V. P. Shibaev and L. Lam, Edtors, Springer-Verlag, New York, Chap 3, p 77 (1994).
  44. T. Yamagishi, Ph. D. Dissertation, Kyoto University (1989).
  45. G. V. Levins and P. Sixou, J. Polym. Sci. Part B: Polym. Phys., 24, 2779 (1986). https://doi.org/10.1002/polb.1986.090241213
  46. T. A. Yamagishi, F. Guittard, M. H. Godinho, A. F. Martin, A. Canbon, and P. Sixou, Polym. Bull., 32, 47 (1994). https://doi.org/10.1007/BF00297413
  47. Y.-D. Ma and S.-Y. Jeong, Industrial Technology Research Paper(Dankook University), 6, 1 (2005).
  48. Y. Nishio and Y. Fujiki, J. Macromol. Sci. Phys., B30, 357 (1991).
  49. S.-L. Tseng, A. Valente, and D. G. Gray, Macromolecules, 14, 715 (1981). https://doi.org/10.1021/ma50004a049
  50. L. Wang, X. Wang, and Y. Huang, J. Appl. Polym. Sci., 92, 213 (2004). https://doi.org/10.1002/app.13433
  51. G. V. Levins and D. G. Gray, Polymer, 26, 1435 (1985). https://doi.org/10.1016/0032-3861(85)90073-4
  52. Y. Onogi, J. L. White, and J. F. Fellers, J. Polym. Sci., Polym. Phys. Ed., 18, 663 (1980). https://doi.org/10.1002/pol.1980.180180401
  53. T. Kondo and T. Miyamoto, Polymer, 39, 1123 (1998). https://doi.org/10.1016/S0032-3861(97)85752-7
  54. J. C. Thies and J. M. G. Cowie, Polymer, 42, 1297 (2001). https://doi.org/10.1016/S0032-3861(00)00558-9
  55. C. Zhang and Y. Huang, Liq. Cryst., 29, 289 (2002). https://doi.org/10.1080/02678290110099457
  56. P. Wojciechowski, J. Appl. Polym. Sci., 76, 837 (2000). https://doi.org/10.1002/(SICI)1097-4628(20000509)76:6<837::AID-APP9>3.0.CO;2-P
  57. M. Yalpani, Polysaccharides, Elsevier Science Publishers, New York, Chap 4, p 83 (1988).
  58. A. Ciferri, Liquid Crystallinity in Polymers, A. Ciferri, Editor, VCH Publishers, New York, Chap 6, p 209 (1991).
  59. T. Sato, J. Nakamura, A. Teramoto, and M. M. Green, Macromolecules, 31, 1398 (1998). https://doi.org/10.1021/ma970968o
  60. C. Robinson, Tetrahedron, 13, 219 (1961). https://doi.org/10.1016/S0040-4020(01)92215-X
  61. T. Itou, K. Van, and A. Teramoto, J. Appl. Polym. Sci., Appl. Polym. Symp., 41, 35 (1985).
  62. D. K. Rout, S. K. Pulapura, and R. A. Gross, Macromolecules, 26, 5999 (1993). https://doi.org/10.1021/ma00074a023
  63. P. Zugenmaier, "Cellulosic Liquid Crystals" in Handbook of Liquid Crystals, D. Demus, J. Goodby, G. W. Gray, H.-W. Spiess, and V. Vill, Editors, Wiley-VCH, Weinheim-New York, Vol 3, Chap IX, p 453 (1998).
  64. T. Fukuda, SEN-I GAKKASHI, 46, 504 (1990). https://doi.org/10.2115/fiber.46.11_P504
  65. U. Vogt and P. Zugenmair, Ber. Bunsen. Phys. Chem., 89, 1217 (1985). https://doi.org/10.1002/bbpc.19850891120
  66. D. K. Rout, S. P. Barman, S. K. Pulapura, and R. A. Gross, Macromolecules, 27, 2945 (1994). https://doi.org/10.1021/ma00089a009
  67. Y. Nishio, R. Chiba, Y. Miyashita, K. Osima, T. Miyajima, N. Kimura, and H. Suzuki, Polym. J., 34, 149 (2002). https://doi.org/10.1295/polymj.34.149
  68. E. B. Barmatov, M. V. Barmotova, B.-S. Moon, and J.-G. Park, Macromolecules, 37, 5490 (2004). https://doi.org/10.1021/ma034936e
  69. Y. Zao and H. Lei, Macromolecules, 27, 4525 (1994). https://doi.org/10.1021/ma00094a015
  70. A. Farahnaky, I. A. Farhat, J. R. Mitchell, and S. E. Hill, Food Hydrocolloids, 23, 1483 (2009). https://doi.org/10.1016/j.foodhyd.2008.08.007
  71. R. Chiba, Y. Nishio, and Y. Miyashita, Macromolecules, 36, 1706 (2003). https://doi.org/10.1021/ma021522x