Infulence of Spacer and Degree of Esterification on Thermotropic Liquid Crystalline Properties of Amyloses Bearing Cholesteryl Group

스페이서와 에스터화도가 콜레스테릴 그룹을 지닌 아밀로오스들의 열방성 액정 특성에 미치는 영향

  • Jeong, Seung-Yong (Department of Polymer Science and Engineering, Dankook University) ;
  • Ma, Yung-Dae (Department of Polymer Science and Engineering, Dankook University)
  • 정승용 (단국대학교 고분자공학과) ;
  • 마영대 (단국대학교 고분자공학과)
  • Published : 2007.07.31

Abstract

Three kinds of amylose derivatives such as: cholesteryloxycarbonated amyloses(CAMs) with degree of esterification(DE) ranging from 1.8 to 3, (6-cholesteryloxycarbonyl)pentanoated amyloses(PAMs) with DE ranging from 0.3 to 3, and fully cholesteryloxycarbonated PAMs(CPAMs) were synthesized, and their thermotropic liquid crystalline properties were investigated. CAMs with $DE{\geq}2.6$, PAM with DE=1.6 and all the CPAMs formed enantiotropic cholesteric phases, whereas PAM with $DE{\geq}2.2$ exhibited monotropic cholesteric phases. PAM with $DE{\geq}2.2$ and CPAMs with (6-cholesteryloxycarbonyl)pentanoyl DE (DS) more than 1.0 formed cholesteric phases with left-handed helical structures whose optical pitches (${\lambda}_{m'}s$) decrease with increasing temperature. However, the ${\lambda}_{m'}s$ of these samples decreased with increasing DS at the same temperature. On the other hand, CAMs, PAM with DE=1.6, and CPAM with DS=0.3 did not display reflection colors over the full cholesteric range, suggesting that the helicoidal twisting power of the cholesteryl group highly depends on the length of the spacer joining the cholesteryl group to the main chain and DS. The thermal stability and degree of order in the mesophase observed for the amylose derivatives highly depended on DE or DS. The results were discussed in terms of the difference ul the hydrogen bond, the internal plasticization, and the decoupling of the motion of side group with the main chain.

세 종류의 아밀로오스 유도체들, 즉 에스터화도(DE)가 1.8에서 3의 범위에 있는 콜레스테릴옥시카본화 아밀로오스들(CAMs), DE가 0.3에서 3의 범위에 있는 (6-콜레스테릴옥시카보닐)펜타노화 아밀로오스들(PAMs), 그리고 완전치환 콜레스테릴옥시카본화 PAMs(CPAMs)들을 합성함과 동시에 이들의 열방성 액정 특성들을 검토하였다. $DE{\geq}2.6$인 CAM, DE=1.6인 PAM 그리고 모든 CPAMs는 쌍방성 콜레스테릭 상들을 형성하는 반면 $DE{\geq}2.2$인 PAMs는 단방성 콜레스테릭 상들을 형성하였다. $DE{\geq}2.2$인 PAMs 그리고 (6-콜레스테릴옥시카보닐)펜타노일 DE(DS)가 1.0 이상인 CPAMs는 온도상승에 의해 광학피치들(${\lambda}_{m'}s$)이 감소하는 콜레스테릭 상들을 형성하였다. 그러나 이들의 시료가 동일한 온도에서 나타내는 ${\lambda}_m$은 DS가 증가함에 따라 감소하였다. 한편, CAMs, DE=1.6인 PAM 그리고 DS=0.3인 CPAM은 콜레스테릭 상의 전 범위에서 반사색깔을 나타내지 않았다. 이러한 사실은 콜레스테릴 그룹에 의한 나선의 비틀림력은 콜레스테릴 그룹과 주사슬을 연결하는 스페이서의 길이와 DS에 민감하게 의존함을 시사한다. 아밀로오스 유도체들에서 관찰되는 콜레스테릭 상들의 열적 안정성 그리고 질서도는 DE 혹은 DS에 민감하게 의존하였다. 이들의 결과를 수소결합력, 주사슬의 가소화 그리고 주사슬로부터 곁사슬 그룹의 운동의 탈리의 차이와의 관련하에서 검토하였다.

Keywords

References

  1. V. Perce and C. Pugh, Side Chain Liquid Crystal Polymers, C. B. McArdle, Editor, Chapmann and Hall, New York, Chap. 3, p. 30 (1989)
  2. R. Zentel, Handbook of Liquid Crystals, D. Demus, J. Goodby. G. W. Gray, and H.-W. Spiess, V. Vill, Editor, Wiley-VCH, Weinheim-New York, Vol. 3, Chap. I, p. 52 (1998)
  3. V. Perce, A. D. Asandei, D. H. Hill, and D. Crawford, Macromolecules, 32, 2597 (1999)
  4. J. Stumpe, Th. Fisher, and H. Menzel, Macromolecules, 29, 2831 (1996)
  5. B.-Q. Chen, A. Kameyama, and T. Nishikubo, Macromolecules, 32, 6485 (1999)
  6. X. L. Piao, J.-S. Kim, Y.-K. Yun, J.-I. Jin, and S.-K. Hong, Macromolecules, 30, 2294 (1997)
  7. J.-W. Lee, J.-I. Jin, B.-W. Jo, J.-S. Kim, W.-C. Zin, and Y.-S. Kang, Acta Polym., 50, 399 (1999)
  8. S.-W. Cha, J.-I. Jin, D.-C. Kim. and W.-C. Zin, Macromolecules, 34, 5432 (2001)
  9. T. Fukuda, Y. Tsujii, and T. Miyamoto, Macromol. Symp., 99, 257 (1995)
  10. Y.-D. Ma, Polymer Science and Technology, 8, 555 (1997)
  11. P. Zugenmaier, Handbook ofLiquid Crystals, D. Demus, J. Goodby, G. W. Gray, H.-W. Spiess, and V. Vill, Editors, Wiley-VCH, Weinheim-New York, Vol. 3, Chap. IX, p. 453 (1998)
  12. S.-Y. Jeong, J.-H. Jeong, Y.-D. Ma, and Y. Tsujii, Polymer(Korea), 25, 279 (2001)
  13. Q. Zhou, L. Zhang, H. Okamura, M. Minoda, and T. Miyamoto, J. Polym. Sci.; Part A: Polym. Chem., 39, 376 (2001) https://doi.org/10.1002/1099-0518(20010101)39:1<1::AID-POLA10>3.0.CO;2-B
  14. Z. Yue and J. M. G. Cowie, Macromolecules, 35, 6572 (2002) https://doi.org/10.1021/ma011278u
  15. J.-H. Kim, S.-Y. Jeong, and Y.-D. Ma, Polymer(Korea), 28, 92 (2004)
  16. J.-H. Kim, S.-Y. Jeong, and Y.-D. Ma, Polymer(Korea), 28, 41 (2004)
  17. S.-Y. Jeong and Y.-D. Ma, Polymer(Korea), 30, 338 (2006)
  18. S.-Y. Jeong and Y.-D. Ma, Polymer(Korea), 31, 37 (2007)
  19. Y.-D. Ma and S.-Y. Jeong, Polymer Preprint, IUPAC-PSK30, 940, (2006)
  20. V. A. E. Shaikh, N. N. Maldar, S. V. Lonikar, C. R. Rajan, and S. Ponrathnam, J. Appl. Polym. Sci., 70, 195 (1998)
  21. V. A. E. Shaikh, N. N. Maldar, S. V. Lonikar, C. R. Raian, and S. Ponrathnam, J. Appl. Polym. Sci., 72, 763 (1999) https://doi.org/10.1002/(SICI)1097-4628(19990523)72:8<999::AID-APP3>3.0.CO;2-T
  22. C. Wu, Q. Gu, Y. Huang, and S. Chen, Liq. Cryst., 30, 733 (2003) https://doi.org/10.1080/0267829031000115005
  23. T. Mihara, T. Uedaira, and N. Koide, Liq. Cryst., 29, 855 (2002)
  24. J.-S. Hu, B.-Y. Zhang, Y.-G. Jia, and Y. Wang, Polym. J., 35, 160 (2003) https://doi.org/10.1295/polymj.35.160
  25. A. V. Sesha Sainath, A. Kameswara Rao, and A. V. Reddy, J. Appl. Polym. Sci., 75, 465 (2000)
  26. S.-Y. Jeong and Y.-D. Ma, Polymer(Korea), 30, 35 (2006) https://doi.org/10.1016/0032-3861(89)90379-0
  27. S.-Y. Jeong and Y.-D. Ma, Polymer(Korea), 31, 58 (2007)
  28. J.-X. Guo and D. G. Gray, Macromolecules, 22, 2082 (1989)
  29. J. C. Thies and J. M. G. Cowie, Polymer, 42, 1297 (2001) https://doi.org/10.1016/S0032-3861(00)00352-9
  30. S.-Y. Jeong, J.-H. Choi, and Y.-D. Ma, Polymer(Korea), 26, 523 (2002)
  31. S.-Y. Jeong and Y.-D. Ma, to be pulished
  32. C. Pugh and A. L. Kiste, Handbook of Liquid Crystals, D. Demus, J. Goodby, G. W. Gray, H.-W. Spiess, and V. Vill, Editors, Wiley-VCH, Weinheim-New York, Vol. 3, Chap. III, p. 123 (1998)
  33. H. Finkelmann, H. Ringsdorf, W. Siol, and J. H. Wendorff, Macromol. Chem., 179, 829 (1978)
  34. Ya. S. Freizon and V. P. Shibaev, Liquid-Crystal Polymers, N. A. Plate, Editor, Plenum Press, New York, Chap. 7, p, 251 (1993)
  35. S. Weidner, D. Wolff, and J. Springer, Liq. Cryst., 20, 587 (1996)
  36. S. Weidner, D. Wolft, and J. Springer, Liq. Cryst., 22, 193 (1997)
  37. A. Yu. Bobrosky, N. I. Boiko, and V. P. Shibaev, Liq. Cryst., 25, 679 (1998)
  38. A. Yu. Bobrosky, N. I. Boiko, and V. P. Shibaev, Liq. Cryst., 27, 57 (2000)
  39. H. Hattori and T. Uryu, J. Polym. Sci.; Part A: Polym. Chem., 38, 887 (2000)
  40. T. Kaneco, H. Nagasawa, J. P. Gong, and Y. Osada, Macromolecules, 37, 187 (2004) https://doi.org/10.1021/ma035272b
  41. E. B. Barmatov, M. V. Barmatov, B.-S. Moon, and J.-G. Park, Macromolecules, 37, 5490 (2004) https://doi.org/10.1021/ma034936e
  42. J.-S. Hu, B.-Y. Zhang, Z.-J. Liu, and B.-L. Zhang, J. Appl. Polym. Sci., 86, 2670 (2002)
  43. B.-Y. Zhang, J.-S. Hu, Y.-G. Jia, and B.-G. Du, Macromol. Chem. Phys., 204, 2123 (2003) https://doi.org/10.1002/macp.200350072
  44. J.-S. Hu, B.-Y. Zhang, Y.-G. Jia, and S. Chen, Macromolecules, 36, 9060 (2003) https://doi.org/10.1021/ma034915k
  45. J.-S. Hu, B.-Y. Zhang, Y. Wang, and F.-B. Meng, J. Polym. Sci.; Part A: Polym. Chem., 42, 3870 (2004) https://doi.org/10.1002/pola.20266
  46. B.-L. Zhang, J.-S. Hu, F.-B. Meng, and B.-Y. Zhang, J. Appl. Polym. Sci., 93, 2511 (2004) https://doi.org/10.1002/app.20692
  47. J.-S. Hu, B.-Y. Zhang, Y. Guan, and X.-Z. He, J. Polym. Sci.; Part A: Polym. Chem., 42, 5262 (2004) https://doi.org/10.1002/pola.20390
  48. T. Pfeutter, D. Hanft, and P. Strohriegl, Liq. Cryst., 29, 1555 (2002)
  49. A. Del Campo, A. Meyer, E. Perez, and A. Bello, Liq. Cryst., 31, 109 (2004) https://doi.org/10.1080/0267829032000159105
  50. F. Branolenburger, B. Mattes, K. Seifert, and P. Strohriegl, Liq. Cryst., 28, 1035 (2001) https://doi.org/10.1080/02678290010004984
  51. A. Isogai, A. Ishizu, and J. Nakano, J. Appl. Polym. Sci., 29, 2097 (1984)
  52. C. Wu, Y. Huang, and S. Chen, Polym. Bull., 48, 33 (2002)
  53. Y.-D. Ma, A. Takada, M. Sugiura, T. Fukuda, T. Miyamoto, and J. Watanabe, Bull. Chem. Jpn., 67, 346 (1994)
  54. T. Yamaguchi, T. Asada, H. Hayashi, and N. Nakamura, Macromolecules. 22, 1141 (1989) https://doi.org/10.1021/ma00192a076
  55. J. W. Lam, X. Kong, Y. Dong, K. K. L. Cheuk, K. Xu, and B. Z. Tang, Macromolecules, 33, 5207 (2000)
  56. A. A. Craig and C. T. Imrie, Macromolecules, 28, 3617 (1995)
  57. C. Pugh and A. L. Kiste, Handbook of Liquid Crystals, D. Demus. J. Goodby, G. W. Gray. H.-W. Spiess, and V. Vill, Editors, Wiley-VCH, Weinheim-New York, Vol. 3, Chap. III, p. 123 (1998)
  58. C. T. Imrie, F. E. Karasz, and G. S. Attard, Macromolecules, 26, 545 (1993)
  59. C. T. Imrie, F. E. Karasz, and G. S. Attard, Macromolecules, 26, 3803 (1993)
  60. A. A. Craig and C. T. Imrie, Macromolecules, 32, 6215 (1999)
  61. K. - H. Kim, S.- Y. Jeong, and Y.- D. Ma, Polymer(Korea), 25, 545 (2001)
  62. H. Ogawa, E. Stibal-Fischer, and H. Finkelmann, Macromol. Chem. Phys., 205, 593 (2004) https://doi.org/10.1002/macp.200300231
  63. L.-M. Liu, B.-Y. Zhang, C.-S. Cheng, and Y.- Y. Zheng, J. Appl. Polym. Sci., 91, 773 (2004) https://doi.org/10.1002/app.13041
  64. H. Coles, Handbook of Liquid Crystals, D. Demus, J. Goodby, G. W. Gray, H.-W. Spiess, and V. Vill, Editors, Wiley-VCH, Weinheim-New York, Vol. 2A, Chap. IV, p. 335 (1998)
  65. S.-Y. Jeong and Y.-D. Ma, Chemical Materials (Dankook University), 3, 29 (2006)
  66. M. L. Tsai and S. H. Chen, Macromolecules, 23, 1908 (1990)
  67. S. H. Chen and M. L. Tsai, Macromolecules, 23, 5055 (1990)
  68. S. Krishnamurthy and S. H. Chen, Macromolecules, 24, 3481 (1991)
  69. J.-H. Kim, S.-Y. Jeong, and Y.-D. Ma, Industrial Technology Research Paper(Dankook University), 7, 75 (2006)
  70. H. de Vires, Acta Crystallogr., 4, 219 (1951)
  71. T. A. Yamagishi, F. Guittard, M. Godinho, A. F. Martin, A. Cambon, and P, Sixou, Polym. Bull., 32, 47 (1994)