• Title/Summary/Keyword: Choice Simulation

Search Result 348, Processing Time 0.024 seconds

A Molecular Dynamics Simulation Study of Trioctahedral Clay Minerals (삼팔면체 점토광물에 대한 분자동역학 시뮬레이션 연구)

  • Lee, Jiyeon;Lee, Jin-Yong;Kwon, Kideok D.
    • Journal of the Mineralogical Society of Korea
    • /
    • v.30 no.4
    • /
    • pp.161-172
    • /
    • 2017
  • Clay minerals play a major role in the geochemical cycles of metals in the Critical Zone, the Earth surface-layer ranging from the groundwater bottom to the tree tops. Atomistic scale research of the very fine particles can help understand the fundamental mechanisms of the important geochemical processes and possibly apply to development of hybrid nanomaterials. Molecular dynamics (MD) simulations can provide atomistic level insights into the crystal structures of clay minerals and the chemical reactivity. Classical MD simulations use a force field which is a parameter set of interatomic pair potentials. The ClayFF force field has been widely used in the MD simulations of dioctahedral clay minerals as the force field was developed mainly based on dioctahedral phyllosilicates. The ClayFF is often used also for trioctahedral mineral simulations, but disagreement exits in selection of the interatomic potential parameters, particularly for Mg atom-types of the octahedral sheet. In this study, MD simulations were performed for trioctahedral clay minerals such as brucite, lizardite, and talc, to test how the two different Mg atom types (i.e., 'mgo' or 'mgh') affect the simulation results. The structural parameters such as lattice parameters and interatomic distances were relatively insensitive to the choice of the parameter, but the vibrational power spectra of hydroxyls were more sensitive to the choice of the parameter particularly for lizardite.

Probabilistic Reliability Based HVDC Expansion Planning of Power System Including Wind Turbine Generators (풍력발전기를 포함하는 전력계통에서의 신뢰도 기반 HVDC 확충계획)

  • Oh, Ungjin;Lee, Yeonchan;Choi, Jaeseok;Yoon, Yongbeum;Kim, Chan-Ki;Lim, Jintaek
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.67 no.1
    • /
    • pp.8-15
    • /
    • 2018
  • New methodology for probabilistic reliability based grid expansion planning of HVDC in power system including Wind Turbine Generators(WTG) is developed in this paper. This problem is focused on scenario based optimal selection technique to decide best connection bus of new transmission lines of HVDC in view point of adequacy reliability in power system including WTG. This requires two kinds of modeling and simulation for reliability evaluation. One is how is reliability evaluation model and simulation of WTG. Another is to develop a failure model of HVDC. First, reliability evaluation of power system including WTG needs multi-state simulation methodology because of intermittent characteristics of wind speed and nonlinear generation curve of WTG. Reliability methodology of power system including WTG has already been developed with considering multi-state simulation over the years in the world. The multi-state model already developed by authors is used for WTG reliability simulation in this study. Second, the power system including HVDC includes AC/DC converter and DC/AC inverter substation. The substation is composed of a lot of thyristor devices, in which devices have possibility of failure occurrence in potential. Failure model of AC/DC converter and DC/AC inverter substation in order to simulate HVDC reliability is newly proposed in this paper. Furthermore, this problem should be formulated in hierarchical level II(HLII) reliability evaluation because of best bus choice problem for connecting new HVDC and transmission lines consideration. HLII reliability simulation technique is not simple but difficult and complex. CmRel program, which is adequacy reliability evaluation program developed by authors, is extended and developed for this study. Using proposed method, new HVDC connected bus point is able to be decided at best reliability level successfully. Methodology proposed in this paper is applied to small sized model power system.

Numerical Simulation of Normal Logging Measurements in the Proximity of Earth Surface (지표 부근에서의 노멀전기검층 수치 모델링)

  • Nam, Myung-Jin;Hwang, Se-Ho
    • Economic and Environmental Geology
    • /
    • v.43 no.3
    • /
    • pp.259-267
    • /
    • 2010
  • Resistivity logging instruments were designed to measure electrical resistivity of formation, which can be directly interpreted to provide water-saturation profile. Short and long normal logging measurements are made under groundwater level. In some investigation sites, groundwater level reaches to a depth of a few meters. It has come to attention that the proximity of groundwater level might distort short and long normal logging readings, when the measurements are made near groundwater level, owing to the proximity of an insulating air. This study investigates the effects of the proximity of groundwater level (and also the proximity of earth surface) on the normal by simulating normal logging measurements near groundwater level. In the simulation, we consider all the details of real logging situation, i.e., the presence of wellbore, the tool mandrel with current and potential electrodes, and currentreturn and reference-potential electrodes. We also model the air to include the earth’'s surface in the simulation rather than the customary choice of imposing a boundary condition. To obtain apparent resistivity, we compute the voltage, i.e., potential difference between monitoring and reference electrodes. For the simulation, we use a twodimensional, goal-oriented and high-order self-adaptive hp finite element refinement strategy (h denotes the element size and p the polynomial order of approximation within each element) to obtain accurate simulation results. Numerical results indicate that distortion on the normal logging is greater when the reference potential electrode is closer to the borehole and distortions on long normal logging are larger than those on short normal logging.

Effects of Simulation-Based Training on the Clinical Competence and Confidence of Nursing Students in Intravenous Injection Performance and the Satisfaction of Clients (시뮬레이션 기반 정맥주사 교육이 간호학생의 임상수행능력과 수행자신감 및 대상자 만족도에 미치는 효과)

  • Jeong, Hyeon-Cheol;Choi, Na-Young;Kim, Mi-Seon;Jeon, Mi-Yang
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.13 no.6
    • /
    • pp.2600-2606
    • /
    • 2012
  • Purpose: This study was conducted to examine the effect of simulation-based training on the clinical competence and confidence of nursing students in intravenous injection performance and the satisfaction of clients. Methods: This study employed a randomized control posttest non-synchronized design. The participants were 90 second-year nursing students(31 multimedia group, 28 IV model group, 31 IV computerized systems group) of S-University in Seoul, Korea. Each group was given 30 minutes for five trial injections, then the students performed intravenous injections on the back of hands of the clients, and the results were measured. Results: There were significant differences in competence of clinical performance among the three groups showed no significant differences in confidence before and after intravenous injections. While there was no significant difference in the satisfaction of clients among the three groups, there were significant differences in the satisfaction of clients resulting from the success or failure of intravenous injections(p=<.001). Conclusion: This study shows that simulation-base training contributes to the enhancement of competence and confidence of nursing students in clinical performance. It would be helpful to use various simulation-based training media as another choice of education in different fields.

Simulation to Evaluate CCTV Positioning in Use of Ray-Tracing Algorithm (Ray-Tracing 알고리즘을 이용한 CCTV배치 평가시뮬레이션)

  • Kim, Suk-Tae;Ahn, Sang-Ook
    • Korean Institute of Interior Design Journal
    • /
    • v.22 no.6
    • /
    • pp.40-48
    • /
    • 2013
  • Utilization of CCTV in crime prevention for public safety is accepted as the most effective measure in terms of crime prevention and control. Also, it is frequently used as a device that shows evidence of an unexpected situation or record on public social relationship. However, it is rare to find a study that qualitatively accessed the monitoring performance of a certain space depending on the choice and positioning of CCTVs. Thus, this study suggested a technology that can quantitatively compare and assess the monitoring performance of CCTVs depending on view angle and effective sight range of cameras as well as the monitoring performance depending on positioning measures. For the analysis, the concept of 3-dimensional surveillance field in the form of a frustum was suggested while deriving 3-dimensional range of sight and quantitative monitoring performance by applying Isovist theory. For the analysis technology, space of analysis subject, point of view (camera), and target point (measurement node) were installed at a 3-dimensional space and in use of ray-tracing algorithm, the line segment that was visually connected between the point of view and target point was extracted and accumulated. For such verification, analysis application was constructed and then applied to four alternative models on view angle and distance as well as four alternatives on positioning in order to verify its efficacy. Through the experiment, it was possible to compare and assess visibility depending on alternatives while quantifying the results by understanding the shadow areas beyond the monitoring range.

The Manufacture of Custom Made 3D Titanium Implant for Skull Reconstruction

  • Cho, Hyung Rok;Yun, In Sik;Shim, Kyu Won;Roh, Tai Suk;Kim, Yong Oock
    • Journal of International Society for Simulation Surgery
    • /
    • v.1 no.1
    • /
    • pp.13-15
    • /
    • 2014
  • Nowadays, with advanced 3D printing techniques, the custom-made implant can be manufactured for the patient. Especially in skull reconstruction, it is difficult to design the implant due to complicated geometry. In large defect, an autograft is inappropriate to cover the defect due to donor morbidity. We present the process of manufacturing the 3D custom-made implant for skull reconstruction. There was one patient with skull defect repaired using custom-made 3D titanium implant in the plastic and reconstructive surgery department. The patient had defect of the left parieto-temporal area after craniectomy due to traumatic subdural hematoma. Custom-made 3D titanium implants were manufactured by Medyssey Co., Ltd. using 3D CT data, Mimics software and an EBM (Electron Beam Melting) machine. The engineer and surgeon reviewed several different designs and simulated a mock surgery on 3D skull model. During the operation, the custom-made implant was fit to the defect properly without dead space. The operative site healed without any specific complications. In skull reconstruction, autograft has been the treatment of choice. However, it is not always available and depends on the size of defect and donor morbidity. As 3D printing technique has been advanced, it is useful to manufacture custom-made implant for skull reconstruction.

A study on Development of method for Train Schedule Simulation (철도 차량운행계획 시뮬레이션 방법론 개발에 대한 연구)

  • Shin, Dae-Sup;Park, Eun-Kyung;Lee, Jin-Sun;Lee, Seon-Ha
    • Journal of the Korean Society for Railway
    • /
    • v.15 no.1
    • /
    • pp.88-95
    • /
    • 2012
  • Presently, because making process of train service plan consist of various constraint condition, for example structure of track, structure of track in station, train maintenance time and others for considering to be necessary of train management, it has been had extremely complex structure problems. For these reasons, it has big problems to compare analysis for various train service time-table. A study suggest methodology to choice service the most effective schedule and plan of train put before comparative analysis on making train diamond picture's expected effect of established possible various train time-table in making process of train service schedule for improving effectiveness and organization of train service schedule establishment. A study uses Line-Blocking theory for analyzing train service time-table and analyze example for regional train Sadang to Ansan section in 4line.

A comparison study of various robust regression estimators using simulation (시뮬레이션을 통한 다양한 로버스트 회귀추정량의 비교 연구)

  • Jang, Soohee;Yoon, Jungyeon;Chun, Heuiju
    • The Korean Journal of Applied Statistics
    • /
    • v.29 no.3
    • /
    • pp.471-485
    • /
    • 2016
  • Least squares (LS) regression is a classic method for regression that is optimal under assumptions of regression and usual observations. However, the presence of unusual data in the LS method leads to seriously distorted estimates. Therefore, various robust estimation methods are proposed to circumvent the limitations of traditional LS regression. Among these, there are M-estimators based on maximum likelihood estimation (MLE), L-estimators based on linear combinations of order statistics and R-estimators based on a linear combinations of the ordered residuals. In this paper, robust regression estimators with high breakdown point and/or with high efficiency are compared under several simulated situations. The paper analyses and compares distributions of estimates as well as relative efficiencies calculated from mean squared errors (MSE) in the simulation study. We conclude that MM-estimators or GR-estimators are a good choice for the real data application.

Encapsulation of SEED Algorithm in HCCL for Selective Encryption of Android Sensor Data (안드로이드 센서 정보의 선택적 암호화를 지원하는 HCCL 기반 SEED 암호의 캡슐화 기능 연구)

  • Kim, Hyung Jong;Ahn, Jae Yoon
    • Journal of the Korea Society for Simulation
    • /
    • v.29 no.2
    • /
    • pp.73-81
    • /
    • 2020
  • HCCL stands for Heterogenous Container Class Library. HCCL is a library that allows heterogeneous types of data to be stored in a container as a single record and to be constructed as a list of the records to be stored in database. With HCCL, encryption/decryption can be done based on the unified data type. Recently, IoT sensor which is embedded in smartphone enables developers to provide various convenient services to users. However, it is also true that infringement of personal information may occur in the process of transmitting sensor information to API and users need to be prepared for this situation in some sense. In this study, we developed a data model that enhances existing security using SEED cryptographic algorithms while managing information of sensors based on HCCL. Due to the fact that the Android environment does not provide permission management function for sensors, this study decided whether or not to encrypt sensor information based on the user's choice so that the user can determine the creation and storage of safe data. For verification of this work, we have presented the performance evaluation by comparing with the situation of storing the sensor data in plaintext.

Development of Power Demand Forecasting Algorithm Using GMDH (GMDH를 이용한 전력 수요 예측 알고리즘 개발)

  • Lee, Dong-Chul;Hong, Yeon-Chan
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.13 no.3
    • /
    • pp.360-365
    • /
    • 2003
  • In this paper, GMDH(Croup Method of Data Handling) algorithm which is proved to be more excellent in efficiency and accuracy of practical use of data is applied to electric power demand forecasting. As a result, it became much easier to make a choice of input data and make an exact prediction based on a lot of data. Also, we considered both economy factors(GDP, export, import, number of employee, number of economically active population and consumption of oil) and climate factors(average temperature) when forecasting. We assumed target forecast period from first quarter 1999 to first quarter 2001, and suggested more accurate forecasting method of electric power demand by using 3-step computer simulation processes(first process for selecting optimum input period, second for analyzing time relation of input data and forecast value, and third for optimizing input data) for improvement of forecast precision. The proposed method can get 0.96 percent of mean error rate at target forecast period.