• Title/Summary/Keyword: Chloride penetration test

Search Result 268, Processing Time 0.029 seconds

Service Life Prediction of R.C. Structures Considering Chloride Binding (염화물 고정화를 고려한 철근 콘크리트 구조물의 내구수명 예측)

  • Lee, Chang-Soo;Park, Jong-Hyok;Kim, Young-Ook
    • Journal of the Korean Society of Hazard Mitigation
    • /
    • v.10 no.1
    • /
    • pp.15-22
    • /
    • 2010
  • Chloride-induced corrosion of steel bars in concrete exposed to marine environments has become one of the major causes of deterioration in many important facilities made of reinforced concrete. A study on chloride penetration in concrete has developed through long period exposure test along seawater, assesment of chloride ion diffusion by electrochemical techniques and so on. However, reasonable and exclusive chloride penetration model considering concrete material properties with mixture, degree of hydration, binding capacity has not been established. Therefore, in this paper, chloride penetration analysis of non-steady state is accomplished with material properties of concrete. Comparing with the results of analysis and chloride ponding test, we could accept the effect of binding capacity on chloride penetration in concrete and these results could be applied to a service life prediction of R.C. structures submerged in seawater. Therefore, there are 20~40% differences of service life to SHRP prediction.

Experimental Investigation of Chloride Ion Penetration and Reinforcement Corrosion in Reinforced Concrete Member

  • Al Mamun, Md. Abdullah;Islam, Md. Shafiqul
    • Journal of Construction Engineering and Project Management
    • /
    • v.7 no.1
    • /
    • pp.26-29
    • /
    • 2017
  • This paper represents the experimental investigation of chloride penetration into plain concretes and reinforced concretes. The main objective of this work is to study the main influencing parameters affecting corrosion of steel in concrete. Plain cement concrete and reinforced cement concrete with different water-cement ratios and different cover depth were subjected to ponding test. Ponding of specimens were done for different periods into 10% NaCl solution. Depth of penetration of chloride solution into specimens was measured after ponding. Specimens were crushed and reinforcements were washed using $HNO_3$ solution and weight loss due to corrosion was calculated accordingly. There was a linear relationship between depth of penetration and water-cement ratio. It was also observed that, corrosion of reinforcing steel increases with chloride ponding period and with water-cement ratio. Corrosion of steel in concrete can be minimized by providing good quality concrete and sufficient concrete cover over the reinforcing bars. Water-cement ratio has to be low enough to slow down the penetration of chloride salts into concrete.

Seawater curing effects on the permeability of concrete containing fly ash

  • Hosseini, Seyed Abbas
    • Advances in concrete construction
    • /
    • v.14 no.3
    • /
    • pp.205-214
    • /
    • 2022
  • Due to seawater's physical and chemical deterioration effects on concrete structures, it is crucial to investigate the durability of these structures in marine environments. In some conditions, concrete structures are exposed to seawater from the first days of construction or because of the lack of potable water, part of the concrete curing stage is done with seawater. In this research, the effects of exposure to seawater after 7 days of curing in standard conditions were evaluated. To improve the durability of concrete, fly ash has been used as a substitute for a part of the cement in the mixing design. For this purpose, 5, 15, and 30% of the mixing design cement were replaced with type F fly ash, and the samples were examined after curing in seawater. The resistance of concrete against chloride ion penetration based on the rapid chloride penetration test (RCPT), water permeability based on the depth of water penetration under pressure, and water absorption test was done. The changes in the compressive strength of concrete in different curing conditions were also investigated. The results show that the curing in seawater has slightly reduced concrete resistance to chloride ion permeation. In the long-term, samples containing FA cured in seawater had up to 10% less resistance to chloride ion penetration. The amount of reduction in chloride ion penetration resistance was more for samples without FA. Whiles, for both curing conditions in the long-term up to 15%, FA improved the chloride ion penetration resistance up to 40%. Curing in seawater slightly increased the penetration depth of water under pressure in samples containing FA, while this increase was up to 12% for samples without FA. In the long-term the compressive strength of samples cured in seawater is not much different from the compressive strength of samples cured in plain water, while at the age of 28 days, due to seawater salts' accelerating effects the difference is more noticeable.

A Evaluation of Environmental Resistance for Bio-Polymer Concretes (바이오 폴리머 콘크리트의 환경 저항성 평가 연구)

  • Kim, Je Won;Kim, Tae Woo;Park, Hee Mun;Kim, Bu Il
    • International Journal of Highway Engineering
    • /
    • v.15 no.5
    • /
    • pp.75-79
    • /
    • 2013
  • PURPOSES : The objective of this study is to evaluate the environmental resistance of bio-polymer concrete for use of pavement materials developed for reducing the carbon-dioxide. METHODS : The compression, tension, and bending strength tests were conducted on the bio-polymer concrete specimens with and without environmental conditioning. The specimens were conditioned using the freezing-thaw and accelerated weathering process for long period of time. To assess the resistance against chloride, the chloride ion penetration resistance tests were carried out on the bio-polymer concrete specimens. RESULTS : Test results show that the maximum difference in strength between specimens with and without conditioning is about 2.6MPa indicating that the effect of environmental conditioning on specimen strength is negligible. Based on the chloride ion penetration resistance test, the penetration quantity of electric charge of the specimens is zero and there is no ion penetration within the bio-polymer concrete. CONCLUSIONS : It is found from this study that there is slight change in strength of bio-polymer concretes before and after environmental conditioning process and no chloride ion penetration observed in these specimens. Therefore, the developed bio-polymer concretes can be applied effectively as pavement materials due to the small change of physical properties with environment change.

Durability Performance of Concrete using Rice Husk Ash

  • Jeong, Euy-Chang;Shin, Sang-Yeop;Kim, Young-Soo
    • Journal of the Korea Institute of Building Construction
    • /
    • v.13 no.2
    • /
    • pp.139-147
    • /
    • 2013
  • The purpose of this study was to investigate the durability performance of concrete that includes rice husk ash. Chloride diffusion coefficient obtained through a rapid chloride penetration test and depth of $CO_2$ penetration obtained through a rapid carbonation test were used to evaluate latent durability. Durability characteristics for rice husk ash replacement and age were determined. Through the experiment, it was found that when the replacement ratio of rice husk ash was increased from 0% to 10%, the compressive strength of concrete containing rice husk ash was similar to that of concrete containing silica fume. This shows that the durability performance of concrete containing rice husk is excellent compared to other concretes containing admixtures.

The Evaluation of Durability by NDT test of Marine-Concrete Structures (항만구조물의 비파괴시험에 의한 안정성 검토)

  • 조병완;이일근;강희풍
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 1995.10a
    • /
    • pp.169-172
    • /
    • 1995
  • Establishment of a diagnosing technology for the deterioration of reinforced concrete structures due to salt contamination is urgent, but few analytical methods based on measured data obtained from concrete structures have been presented so far. Chloride penetration into concrete from sea water is generally understood and analysed as diffusion of chloride ion. This paper presents a new method of predicting chloride penetration into concrete based on diffusion theory. Also, it determines the duralility of Marine structure in service with the prediction of remaiing lifetime by the carvonation test.

  • PDF

Analysis on Penetration of Chloride Ion into Carbonated Concrete in Marine Atmospheric Conditions (해양 대기 환경 하에서 탄산화 콘크리트에 대한 염소이온 침투 해석)

  • Choi, Doo-Man;Jang, Seung-Yup
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2006.05b
    • /
    • pp.233-236
    • /
    • 2006
  • Chloride attack and carbonation induced corrosion of reinforcement are those of the main factors which cause the deterioration of concrete structures. The objective of this study is to suggest an analytic model for the prediction of chloride penetration into carbonated concrete, in order to make up for the current codes. Carbonation depth model considering the moisture effect is validated by being compared with the test data and the analytic model on chloride penetration into carbonated concrete is developed. Finally, the corrosion-initiation time has been predicted by the present model, being compared with that by the current code equation. The comparison shows that the current code equation can underestimate the chloride penetration into carbonated concrete in marine atmospheric conditions.

  • PDF

An Experimental Study on the Strength and Permeability Characteristics of Repair Mortar (보수용 모르타르의 강도 및 투과특성에 관한 연구)

  • Paik, Shin-Won
    • Journal of the Korean Society of Safety
    • /
    • v.18 no.4
    • /
    • pp.105-109
    • /
    • 2003
  • Structure surfaces damaged due to many causes are repaired by several special mortars. But wide studies about the permeability of these mortars were rarely conducted. In this study compressive strength test, flexural strength test and bond strength test of these mortars were conducted. And chloride ion penetration test was also conducted to explore the permeability charcteristics of selected repair mortars. This test was carried out following the standard ASTM C1202-91. Colouriemtric penetration depth can be drawn from these test results using a relationship equation between colourimetric penetration depth and charge passed which C. Andrade suggested. Diffusion coefficient can be calculated by CTH rapid method. To the end, the present study can provide a firm base for the application of repair mortars to concrete structures.

Characteristics of Chloride Penetration with Deicer Types (제설제 종류에 따른 염화물 침투 특성)

  • Choi, Yoon-Suk;Kim, Kang-Rea;Kim, Myung-Yu;Yang, Eun-Ik
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2006.11a
    • /
    • pp.549-552
    • /
    • 2006
  • Deicing salt has been generally used for prevention of a road freezing in winter, and the amount is increasing every year. However, deicing salt may induce the decrease of bond strength, surface scaling, and environmental pollution, etc. The purpose of this paper is to suggest the fundamental data on safety and durability for concrete structures through the estimation of characteristics of chloride penetration with deicer types. According to the test results, as age of concrete is increased, chloride penetration depth is also increased independent of deicer types. However, there is no remarkable difference between deicer types. And when the estimation of chloride diffusion is carried out by immersion test, diffusion coefficient is decreased with ages, and short-term estimation may overestimate the coefficient.

  • PDF

Chloride-Penetration Analysis in Cracked Early-Age Concrete (균열을 갖는 초기재령 콘크리트의 염화물 침투 해석)

  • 송하원;박상순;변근주
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2001.11a
    • /
    • pp.635-640
    • /
    • 2001
  • In this study, a mathematical model is established for prediction of chloride penetration in unsaturated cracked early-age concrete. The model is combined with models for thermo-hygro dynamic coupling of cement hydration, moisture transport and micro-structure development. Chloride permeability and water permeability at cracked early-age concrete specimens are evaluated using a rapid chloride permeability test and a low-pressure water permeability test, respectively. Then, a homogenization technique is introduced into the model to determine equivalent diffusion coefficient and equivalent Permeation coefficient. Increased chloride transport due to cracks at the specimen could be predicted fairly well by characterizing the cracks using proposed model. Proposed model is verified by comparing diffusion analysis results with test results.

  • PDF