• 제목/요약/키워드: Chloride penetration test

검색결과 268건 처리시간 0.029초

고내구성 재료를 사용한 휨부재의 균열에 따른 염화물 침투 특성 (Characteristics of Chloride Penetration in Cracked Flexural Member using Durable Materials)

  • 진상호;김일순;김명유;양은익;이성태
    • 한국콘크리트학회:학술대회논문집
    • /
    • 한국콘크리트학회 2008년도 추계 학술발표회 제20권2호
    • /
    • pp.401-404
    • /
    • 2008
  • 균열은 콘크리트에 염소이온과 같은 유해한 물질의 침투경로가 되어 내구성에 심각한 열화를 야기한다. 따라서 고내구성 재료를 사용한 콘크리트 휨부재에서의 균열 발생에 따른 염소이온 침투특성을 검토하고자 하였다. 이를 위해, 고내구성 재료를 적용한 보에 하중을 가하여 휨균열을 도입시키고, 촉진 염화물 침투실험(RCPT)과 장기 염화물 침투실험을 실시하여 염화물 침투 특성을 파악하였다. 실험결과에 따르면, 고내구성 재료를 적용한 부재는 균열이 발생하여도 일반 콘크리트 부재에 비해 높은 염화물 침투 저항성을 보였다. 특히 고로슬래그 미분말을 적용한 경우, 균열 부재의 장기 염화물 침투 실험에서 탁월한 염화물 침투 저항성을 보였다.

  • PDF

석탄가스화 용융 슬래그 치환 콘크리트의 염화이온 침투 저항성 검토 (Evaluation of Chloride Ion Penetration Resistance of Coal Gasification Slag Replaced Concrete)

  • 조현서;김민혁;이건철
    • 한국건축시공학회:학술대회논문집
    • /
    • 한국건축시공학회 2019년도 추계 학술논문 발표대회
    • /
    • pp.166-167
    • /
    • 2019
  • In this study, to test the performance of concrete used as a concrete admixture as a recycling method of CGS, gypsum was mixed and the chloride ion penetration resistance test of CGS and BFS substituted concrete was conducted. As a result, it was found that without gypsum type test specimen, the CGS sustituted test specimens had lower chloride ion penetration resistance than the BFS substituted specimens. When gypsum was added, it was confirmed that the chloride ion penetration resistance was poor regardless of the type of admixture. In addition, it was confirmed that both admixtures were less resistant to chloride ion penetration than OPC, regardless of the presence of gypsum. However, considering the uneven quality variation of coal, which greatly affects the quality of CGS, further research is needed.

  • PDF

고내구성콘크리트의 염해저항성에 관한 실험적 연구 (An Experimental Study on the Salt Damage Resistance of High Durable Concrete)

  • 윤재환;정재동
    • 한국건축시공학회지
    • /
    • 제3권3호
    • /
    • pp.73-81
    • /
    • 2003
  • In this paper, salt damage resistance of high durable concrete was tested. High durable concrete was made by using low water cement ratio, chemical admixture called super-durable admixture and mineral admixtures such as fly-ash, ground granulated blast-furnace slag, silica fume. Two kinds of salt damage resistance test were carried out. One method is chloride ion penetration test(ASTM C1202), and the other one is depth of chloride penetration test in saline solution. Test results were as followers: 1) The depth of chloride ion penetration increased exponentially as water cement ratio was increased and time passed. 2) Super-durable admixture had little effect on the improvement of salt damage resistance of concrete. 3) Silica fume and ground granulated blast-furnace slag were effective on salt damage resistance because of pozzolanic reaction, but fly-ash had a little effect.

경화중 콘크리트의 염해 침투성능에 관한 연구 (Prediction of chloride penetration into hardening concrete)

  • 번위결;왕소용
    • 한국건축시공학회:학술대회논문집
    • /
    • 한국건축시공학회 2015년도 춘계 학술논문 발표대회
    • /
    • pp.50-51
    • /
    • 2015
  • In marine and coastal environments, penetration of chloride ions is one of the main mechanisms causing concrete reinforcement corrosion. Currently, most of experimental investigations about submerged penetration of chloride ions are started after the four weeks standard curing of concrete. The further hydration of cement and reduction of chloride diffusivity during submerged penetration period are ignored. To overcome this weak point, this paper presents a numerical procedure to analyze simultaneously cement hydration reaction and chloride ion penetration process. First, using a cement hydration model, degree of hydration and phase volume fractions of hardening concrete are determined. Second, the dependences of chloride diffusivity and chloride binding capacity on age of concrete are clarified. Third, chloride profiles in hardening concrete are calculated. The proposed numerical procedure is verified by using chloride penetration test results of concrete with different mixing proportions.

  • PDF

Strength and chloride penetration of Portland cement mortar containing palm oil fuel ash and ground river sand

  • Rukzon, Sumrerng;Chindaprasirt, Prinya
    • Computers and Concrete
    • /
    • 제6권5호
    • /
    • pp.391-401
    • /
    • 2009
  • This paper presents a study of the strength and chloride penetration of blended Portland cement mortar containing ground palm oil fuel ash (POA) and ground river sand (GS). Ordinary Portland cement (OPC) was partially replaced with POA and GS. Compressive strength, rapid chloride penetration test (RCPT) and chloride penetration depth of mortars were determined. The GS only asserted the packing effect and its incorporation reduced the strength and the resistance to chloride penetration of mortar. The POA asserted both packing and pozzolanic effects. The use of the blend of equal portion of POA and GS also produced high strength mortars, save cost and excellent resistance to chloride penetration owing to the synergic effect of the blend of POA and GS. For chloride depth, the mathematical model correlates well with the experimental results. The computer graphics of chloride depth of the ternary blended mortars are also constructed and can be used to aid the understanding and the proportioning of the blended system.

고로슬래그 미분말 콘크리트의 염화물이온 확산모델 (A Chloride Ion Diffusion Model in Blast Furnace Slag Concrete)

  • 이석원;박상순;송하원;변근주
    • 한국콘크리트학회:학술대회논문집
    • /
    • 한국콘크리트학회 2000년도 가을 학술발표회논문집(I)
    • /
    • pp.467-472
    • /
    • 2000
  • It is known that chloride ion in concrete destroys the passive film of reinforcement inside concrete and accelerates corrosion which is the most influencing factor to durability of concrete structures. In this thesis, a chloride ion diffusion model for blast furnace slag(BFS) concrete, which has better resistance to both damage due to salt and chloride ion penetration than ordinary portland cement concrete, is proposed by modifying existing model of normal concrete. Proposed model is verified by comparing diffusion analysis results with both results by indoor chloride penetration test for specimens and field test results for actual RC bridge pier. Also, the optimum resistance condition to chloride penetration is obtained according to degrees of fineness and replacement ratios of BFS concrete. As a result, resistance to chloride ion penetration for BFS concrete is more affected by replacement ratio than degree of fineness.

  • PDF

A Hydration based Model for Chloride Penetration into Slag blended High Performance Concrete

  • Shin, Ki-Su;Park, Ki-Bong;Wang, Xiao-Yong
    • Architectural research
    • /
    • 제20권1호
    • /
    • pp.27-34
    • /
    • 2018
  • To improve the chloride ingress resistance of concrete, slag is widely used as a mineral admixture in concrete industry. And currently, most of experimental investigations about non steady state diffusion tests of chloride penetration are started after four weeks standard curing of concrete. For slag blended concrete, during submerged chloride penetration tests periods, binder reaction proceeds continuously, and chloride diffusivity decreases. However, so far the dependence of chloride ingress on curing ages are not detailed considered. To address this disadvantage, this paper shows a numerical procedure to analyze simultaneously binder hydration reactions and chloride ion penetration process. First, using a slag blended cement hydration model, degree of reactions of binders, combined water, and capillary porosity of hardening blended concrete are determined. Second, the dependences of chloride diffusivity on capillary porosity of slag blended concrete are clarified. Third, by considering time dependent chloride diffusivity and surface chloride content, chloride penetration profiles in hardening concrete are calculated. The proposed prediction model is verified through chloride immersion penetration test results of concrete with different water to binder ratios and slag contents.

박테리아 흡착 팽창질석을 혼입한 모르타르의 염소이온 침투 저항성 (Chloride Ion Penetration Resistance of Mortars including Expanded Vermiculite Immobilizing Bacteria)

  • 정승배;양근혁
    • 한국건축시공학회:학술대회논문집
    • /
    • 한국건축시공학회 2017년도 추계 학술논문 발표대회
    • /
    • pp.151-152
    • /
    • 2017
  • This tests examined the effectiveness of bacteria slime on the chloride ion penetration resistance of cement mortar. Test results exhibited that the chloride ion penetration depth of mortars including 5% expanded vermiculite immobilizing bacteria was 17% smaller than that of the control mortar without expanded vermiculite.

  • PDF

염소이온 투과실험을 이용한 균열보수성능 평가에 관한 시험적 연구 (A Experimental Study on the Repair Performance of Crack Using Chloride ion Penetration)

  • 심종성;문도영;김언경
    • 한국콘크리트학회:학술대회논문집
    • /
    • 한국콘크리트학회 2001년도 가을 학술발표회 논문집
    • /
    • pp.503-508
    • /
    • 2001
  • With difference to strengthening which could be evaluated structural efficiency, it is hard to do quantitative repair efficiency evaluation achieved compressive strength test or appearance investigation. In this paper, chloride ion penetration test is exacted to core specimens picked from repaired structure for quantitative repair evaluation. The result of experimentation shows repair efficiency quantitatively by means of difference between penetration amount of chloride ion for repaired and unrepaired core specimens.

  • PDF

고르슬래그미분말을 다량 혼입한 콘크리트의 염분침투저항성 (Chloride Penetration Resistance of Concrete Mixed with High Volume Blast Furnace Slag)

  • 박기철;김동훈;박신;임남기
    • 한국건축시공학회:학술대회논문집
    • /
    • 한국건축시공학회 2014년도 추계 학술논문 발표대회
    • /
    • pp.40-41
    • /
    • 2014
  • As a result of strength test on BFS concrete, those mixed with 30% and 50% of BFS8000, respectively, showed higher or equivalent strength compare to OPC. As a result of test of chloride penetration on BFS, diffusion coefficients of concrete mixed with 30% FA4000 and FA5000, respectively, showed to restrain average 6.5% of diffusion coefficient compared to OPC. And in case of BFS concrete, those mixed with BFS6000 and BFS8000, restrained diffusion of chloride ions 253% and 336%, respectively, compared to OPC. Therefore, Mixing 50% of BFS was most efficient in order to maximize restraint of chloride penetration according to metathesis of large amount. In this study, when mixing BFS to concrete for long-run durability and restraint against chloride penetration, for BFS, as fineness was higher and mixing it to concrete with less or equivalent 50% of replacement rate, there were results of higher strength compared to OPC and more efficient restraint of chloride ions.

  • PDF