• Title/Summary/Keyword: Chloride ions

Search Result 575, Processing Time 0.031 seconds

Preparation of PVC-Al(OH)3 Beads Immobilized Al(OH)3 with PVC and their Adsorption Characteristics for Fluoride Ions from Aqueous Solution (Al(OH)3를 PVC로 고정화한 PVC-Al(OH)3 비드의 제조와 수중의 불소 이온의 흡착 특성)

  • You, Hae-Na;Kam, Sang-Kyu;Lee, Min-Gyu
    • Journal of Environmental Science International
    • /
    • v.23 no.5
    • /
    • pp.887-893
    • /
    • 2014
  • In order to remove fluoride ions from aqueous solution, PVC-$Al(OH)_3$ beads were prepared by immobilizing $Al(OH)_3$ with polyvinyl chloride (PVC). The prepared PVC-$Al(OH)_3$ bead was characterized by using SEM, EDS and Zeta potential. Dependences of pH, contact time and initial fluoride concentration on the adsorption of fluoride ions were studied. The optimal pH was in the range of 4~10. The adsorption was rapid during the initial 12 hr, and equilibrium was attained within 72 hr. The adsorption rate of fluoride ions by PVC-$Al(OH)_3$ beads obeyed the pseudo-second-order kinetic model. The maximum adsorption capacity obtained from Langmuir isotherm model was found to be 62.68 mg/g.

Viscosities of Tetraalkylammonium Chloride Solutions in Isopropanol-Water Mixtures at $30^{\circ}C$ (2-프로판올-물 혼합용매중의 tetraalkylammonium chloride 용액의 점도에 관한 연구)

  • Byung-Rin Cho;Young-Ja Lee;Ikchoon Lee
    • Journal of the Korean Chemical Society
    • /
    • v.15 no.3
    • /
    • pp.159-163
    • /
    • 1971
  • The relative viscosities ${\eta}_r$ of a series of homologous tetraalkylammonium chlorides $Me_4NCl,\;Et_4NCl,\;Pr_4NCl\;and\;Bu_4NCl$ in a series of isopropanol-water mixtures have been determined at $30^{\circ}C$ using Ubbelohde-type viscometers. The viscosity data have been interpreted in terms of viscosity A-and B-coefficients calculated from the Jones-Dole equation, ${\eta}_r=1+AC^{1/2}+BC$. The results indicate that the structure-breaking effect of chloride ion is maximum at 0.l~0.15 mole fraction isopropanol, while the size effect(Einstein effect) of the larger $R_4N^+$ ions is maximum at 0.2~0.25 mole fraction. The results also indicate that in aqueous and water-rich solutions the larger $R_4N^+$ ions (e.g. $Pr_4N+, Bu_4N^+$) appear to be excellent structure-formers and that the viscosities of solutions is not strongly affected by the electrostriction effect of chloride ion.

  • PDF

Electrochemical corrosion study of helium ions implanted Zircaloy-4 in chloride media

  • Rafique, Mohsin;Khan, Atika;Afzal, Naveed;Farooq, Ameeq;Imran, M.
    • Nuclear Engineering and Technology
    • /
    • v.53 no.3
    • /
    • pp.927-931
    • /
    • 2021
  • In this work, an attempt is made to improve the electrochemical corrosion resistance of Zircaloy-4 by helium ions implantation. For this purpose, the Zircaloy-4 was implanted with 300 keV helium ions of fluences 1 × 1013, 1 × 1015, and 1 × 1016 ions-cm-2 by using Pelletron Accelerator. Electrochemical tests of pristine and ion-implanted samples were performed in NaCl solution and their potentiodynamic polarization curves were obtained. The results showed enhancement of the corrosion resistance of Zircaloy-4 after helium ions implantation. The corrosion rate and current density of the material were significantly reduced by the helium implantation. The decrease in corrosion parameters was attributed to helium ions diffusion inside Zircaloy-4 that reduced the electrons flow from the samples.

Diffusion Characteristics of Chloride ion under Single and Combined Attacks in Concrete Structures (콘크리트 구조물의 단일 및 복합열화 환경하에서의 염소이온 확산특성)

  • 오병환;강의영;인광진;이성규;서정문
    • Journal of the Korea Concrete Institute
    • /
    • v.14 no.5
    • /
    • pp.708-717
    • /
    • 2002
  • Durability is a major concern in the design and construction of concrete structures which are located in the sea environments. In particular, the combined action of chlorides, sulfates, and carbonation nay influence greatly the deterioration behavior of concrete structures. The purpose of the present study is to explore the diffusion characteristics of chloride ions in concrete structures under combined deterioration conditions. The present test results indicate that the chloride penetration into concrete structures is more pronounced under combined attacks of chlorides, sulfates and carbonation. The diffusion coefficients and surface chloride contents were found to increase under combined multiple deterioration conditions. The present study provides quantitatively the penetration and diffusion characteristics of chloride ions in concrete structures under various deterioration conditions. The results of present study may be efficiently used for the realistic design of concrete structures under combined deterioration conditions.

Relationship between Chloride Diffusivity and the Fundamental Properties of Concrete (염소이온의 확산계수와 콘크리트의 기초물성과의 관계)

  • Choi, Doo-Sun;Choi, Jae-Jin
    • Journal of the Korean Society of Hazard Mitigation
    • /
    • v.9 no.1
    • /
    • pp.15-20
    • /
    • 2009
  • Marine concrete structure is exposed to salt injury and deteriorated by steel corrosion due to chloride ions diffusion. It, therefore, is very important to estimate the chloride diffusivity in concrete. In this paper the compressive strength and permeable pore volume of concrete are measured and the diffusion coefficient and penetration depth of chloride ions in concrete were investigated to estimate the chloride diffusivity efficiently. To correlate these results each other, regression analysis was done. The results showed a good linear relation between chloride diffusivity and the fundamental properties of concrete and the chloride diffusivity of concrete with water-cement ratios of $40%{\sim}60%$ were about $2.5{\sim}6.6{\times}10^{-12}m^2/s$.

Service-Life Prediction of Reinforced Concrete Structures under Corrosive Environment

  • Shimomura, Takumi
    • Corrosion Science and Technology
    • /
    • v.4 no.5
    • /
    • pp.171-177
    • /
    • 2005
  • A comprehensive framework for numerical simulation of time-dependent performance change of reinforced concrete (RC) structures subjected to chloride attack is presented in this paper. The system is composed of simplified computational models for transport of moisture and chloride ions in concrete pore structure and crack, corrosion of reinforcement in concrete and mechanical behavior of RC member with reinforcement corrosion. Service-life of RC structures under various conditions is calculated.

A Study on the Cementation of Cu, Ni and Co Ions with Mn Powders in Chloride Solution (염산용액중에서 망간분말에 의한 구리, 니켈 및 코발트 이온의 세멘테이션에 관한 연구)

  • 안재우;안종관;박경호
    • Resources Recycling
    • /
    • v.9 no.3
    • /
    • pp.3-12
    • /
    • 2000
  • A Study on the cementation for the recovery of Cu, Ni and Co with Mn metallic powders in leaching solution from the manganese nodule that have removed Fe ions was studied. The results showed that the recovery efficiencies of metal ions with Mn powders increased when the temperature, pH and the concentration of chloride ions were increased in mixed solution. And the recovery efficiencies of Cu was 98% and not changed with the addition amounts of Mn powders but, in case of Co and Ni, the recovery efficiencies were increased with the addition amounts. The particle size of precipitate was about $5\mu\textrm{m}$. From the results of experiment we proposed the two-step cementation process for the recovery of Cu, Ni and Co with Mn powders.

  • PDF

Evaluation on Chloride Binding Capacity of Mineral Mixed Paste Containing an Alkaline Activator (알칼리 활성화제를 사용한 무기질 혼합 페이스트의 염화물이온 고정화 평가)

  • Cho, Gyu-Hwan;Yeo, In-Hwan;Ji, Dong-Hun
    • Journal of the Korea Concrete Institute
    • /
    • v.28 no.2
    • /
    • pp.157-165
    • /
    • 2016
  • It is possible to achieve high strength ranging from 40 MPa to 70 MPa in alkali-activated slag concrete (AASC), and AASC is also known to have a finer pore structure due to its high latent hydraulicity and fineness of slag cement, which makes it difficult for chloride ions to penetrate. Electrophoresis is mostly used to calculate the effective diffusion coefficient of chloride ions, and then to evaluate resistance to salt damage. Few studies have been conducted on the fixation capacity of chloride ions in AASC. For this reason, in this study the chloride fixation within the hardened paste was evaluated according to the type and the amount of alkaline activators. As a result, it was revealed that among the test specimens, the chloride fixation was greatest in the paste containing $Na_2SiO_3$. In addition, it was found that as more activator was added, a higher level of chloride fixation was observed. Through this analysis, it can be concluded that the type and the amount of alkaline activators have a high correlation with the amount of C-S-H produced.

Theoretical Analysis of Critical Chloride Content in (Non)Carbonated Concrete Based on Characteristics of Hydration of Cement (시멘트 수화 특성 및 탄산화를 고려한 콘크리트의 임계 염소이온량에 대한 해석 기법)

  • Yoon, In-Seok
    • Journal of the Korea Concrete Institute
    • /
    • v.19 no.3
    • /
    • pp.367-375
    • /
    • 2007
  • Critical chloride content for corrosion initiation is a crucial parameter in determining the durability and integrity of reinforced concrete structures, however, the value is still ambiguous. Most of the studies reporting critical threshold chloride content have involved the experimental measurement of the average amount of the total chloride content at arbitrary time. The majority of these researches have not dealt with this issue combined with carbonation of concrete, although carbonation can significantly impact on critical threshold chloride content. Furthermore, the studies have tried to define the critical chloride content within the scope of their experimental concrete mix proportion at arbitrary time. However, critical chloride content for corrosion initiation is known to be affected by a lot of factors including cement content, type of binder, chloride binding, concentration of hydroxyl ions, and so on. It is necessary to define the unified formulation to express the critical chloride content for various mix proportions of concrete. The purpose of this study is to establish an analytical formulation of the critical chloride content of concrete. In this formulation, affecting factors, such as mix proportion, environment, chemical evolution of pore solution with elapsed time, carbonation of concrete and so on are taken into account. Based on the Gouda's experimental results, critical chloride content is defined as a function of $[Cl^-]$ vs. $[OH^-]$ in pore solution. This is expressed as free chloride content with mass unit to consider time evolution of $[OH^-]$ content in pore solution using the numerical simulation programme of cementitious materials, HYMOSTRUC. The result was compared with other experimental studies and various codes. It is believed that the approach suggested in this study can provide a good solution to determine the reasonable critical chloride content with original source of chloride ions, for example, marine sand at initial time, and sea water penetration later on.