• Title/Summary/Keyword: Chitosan membrane

Search Result 135, Processing Time 0.029 seconds

Pharmaceutical Studies on Chitosan Matrix: Controlled release of aspirin from chitosan device

  • Lee, Chi-Young;Kim, Sung-Ho
    • Archives of Pharmacal Research
    • /
    • v.10 no.2
    • /
    • pp.88-93
    • /
    • 1987
  • Chitosan ($\beta$-D-glucosaminan) is chemically prepared from chitin (N-acetyl-$\beta$- D-glucosaminan) which is an unutilized natural resource. We now report on the suitability of the chitosan matrix for use as vehicles for the controlled release of drugs. Salicylic acid and aspirin were used as model drugs in this study. The permeation of salicylic acid in the chitosan membranes was determined in a glass diffusion cell with two compartments of equal volume. Drug release studies on the devices were conducted in a beaker containing 5% sodium hydroxide solution. Partition coefficient (Kd) value for acetate membrane (472) is much greater than that for fluoro-perchlorate chitosan membrane (282). Higher Kd value for acetate chitosan membrane appears to be inconsisstent with the bulk salicylic acid concentration. The permeability constants of fluoro-perchlorate and acetate chisotan membranes for salicylic acid were 3.139 ${\times}10^{-7}cm^2$ min up to 60 min and that of 30% aspirin in the devices was 4.739${\times}10^{-7}cm^2$sec upto 60 min. As the loading dose of aspirin in a chitosan device increased, water up-take of chitosan device increased, but in case of salicylic acid it decreased. The release rate increased with increase in the molecular volume of the drugs. Thses result suggest that the release mechanism may be controlled mainly by diffusion through pores.

  • PDF

Adsorption mechanism of copper ions on porous chitosan membranes: Equilibrium and XPS study

  • Ghaee, Azadeh;Zerafat, Mohammad Mahdi
    • Membrane and Water Treatment
    • /
    • v.7 no.6
    • /
    • pp.555-571
    • /
    • 2016
  • Heavy metal contamination has attracted considerable attention during recent decades due to the potential risk brought about for human beings and the environment. Several adsorbent materials are utilized for the purification of contaminated water resources among which chitosan is considered as an appropriate alternative. Copper is a heavy metal contaminants found in several industrial wastewaters and its adsorption on porous and macroporous chitosan membranes is investigated in this study. Membranes are prepared by phase inversion and particulate leaching method and their morphology is characterized using SEM analysis. Batch adsorption experiments are performed and it is found that copper adsorption on macroporous chitosan membrane is higher than porous membrane. The iso-steric heat of adsorption was determined by analyzing the variations of temperature to investigate its effect on adsorption characteristics of macroporous chitosan membranes. Furthermore, desorption experiments were studied using NaCl and EDTA as eluants. The mechanism of copper adsorption was also investigated using XPS spectroscopy which confirms simultaneous occurrence of chelation and electrostatic adsorption mechanisms.

A study on the biodegradable novel chitosan nanofiber membrane as a possible tool for guided bone regeneration (키토산 나노 차폐막의 골조직 재생유도 능력에 관한 조직학적 연구)

  • Shin, Seung-Yun;Park, Ho-Nam;Kim, Kyoung-Hwa;Lee, Seung-Jin;Park, Yoon-Jeong;Ku, Young;Rhyu, In-Chul;Han, Soo-Boo;Chung, Chong-Pyoung
    • Journal of Periodontal and Implant Science
    • /
    • v.34 no.3
    • /
    • pp.543-549
    • /
    • 2004
  • Chitosan has been widely researched as bone substitution materials and membranes in orthopedic/periodontal applications. Chitosan nanofiber membrane was fabricated by chitosan nanofiber using electrospinning technique. The structure of the membrane is nonwoven, three-dimensional, porous, and nanoscale fiber-based matrix. The aim of this study was to evaluate the biocompatibility of chitosan nanofiber membrane and to evaluate its capacity of bone regeneration in rabbit calvarial defect. Ten mm diameter round cranial defects were made and covered by 2 kinds of membranes (Gore-Tex membrane, chitosan nanofiber membrane) in rabbits. Animals were sacrificed at 4 weeks after surgery. Decalcified specimens were prepared and observed by microscope. Chitosan nanofiber membrane maintained its shape and space at 4 weeks. No inflammatory cells were seen on the surface of the membrane. In calvarial defects, new bone bridges were formed at all defect areas and fused to original old bone. No distortion and resorption was observed in the grafted chitosan nanofiber membrane. However bone bridge formation and new bone formation at the center of the defect could not be seen in Gore-Tex membranes. It is concluded that the novel membrane made of chitosan nanofiber by electrospinning technique may be used as a possible tool for guided bone regeneration.

THE EFFECT ON GUIDED BONE REGENERATION OF THE CHITOSAN MEMBRANE (키토산 차단막의 유도골재생 효과)

  • Moon, Jin-Suk;Park, Young-Ju;Park, Jun-Woo;Lee, Yong-Chan;Cho, Byoung-Ouck;Ahn, Byoung-Keun
    • Journal of the Korean Association of Oral and Maxillofacial Surgeons
    • /
    • v.28 no.4
    • /
    • pp.256-263
    • /
    • 2002
  • Using the rat's skull, the study on the biodegradability and guided bone regeneration of the chitosan membrane was performed. The results are as follows: 1. The biodegradability of the chitosan membrane could not be confirmed, but after 12 weeks, this membrane did not yet break into small pieces and there was no specific local tissue reaction. 2. It was not certain whether the pore size of this membrane was affected on osteoblastic activity. 3. After 6 weeks, the bony defect area of rat's skull was not completely filled, but on high magnification it showed that the osteoclasts and the osteoblasts were observed in the regenerating area. In conclusion, the chitosan membrane developed in this study was fit for guided bone regeneration.

Dehydration of Alcohol Solutions Through Crosslinked Chitosan Composite Membranes II. Dehydration of Ethanol Solution Through Modified Chitosan Composite Membranes (가교키토산 복합막을 통한 알콜수용액의 탈수 II. 변성 키토산 복합막을 통한 에탄올의 탈수)

  • 이영무;남상용;유제강;류경옥
    • Membrane Journal
    • /
    • v.6 no.4
    • /
    • pp.242-249
    • /
    • 1996
  • To improve pervaporation performance of water/ethanol mixtures, chitosan/poly(vinyl alcohol) blended and phosphorylated chitosan composite membranes were prepared. Chitosan/poly(vinyl alcohol) blends were prepared with various blend ratios and then crosslinked with glutaraldehyde by two methods. With increasing crosslinking agent content and crosslinking times separation factor increased and permeate flux decreased. Separation factor of the membrane which contains glutaraldehyde as a crosslinking agent was higher than that of the membrane surface crosslinked. Phosphorylated chitosan was prepared with various reaction times and composite membrane was prepared. As reaction times increased, the separation factor increased with high affinity for water.

  • PDF

Controlled Release of Insulin through Glucose Oxidase Immobilized Composite Poly(vinyl Alcohol)/Chitosan Blend Membrane (글루코오즈가 고정화된 Poly(vinly Alcohol)/Chitosan 블렌드 복합막을 통한 인슐린의 방출조절)

  • Kim, Jin Hong;Shim, Jin Ki;Lee, Young Moo;Son, Tae Il
    • Membrane Journal
    • /
    • v.3 no.2
    • /
    • pp.70-78
    • /
    • 1993
  • The permeation of insulin was conducted through glucose oxidase(GOD) immobilized composite membrane composed of poly(vinyl akohol)/chitosan blend and porous polyamide membrane. The permeation coefficient of insulin through GOD-immobilized membrane was in the order of $10^{-6}{\sim}10^{-7}\textrm{cm}^3cm/\textrm{cm}^2sec$. The sensitivity of the composite membrane to the glucose concentration was high in a low glucose concentration resulting from the oxygen depletion from the membrane. The permeation of insulin through composite membrane made of PVA/chitosan and porous polyamide membrane was changed by pH and glucose concentration. The permeability was progressively increasing with the glucose concentration at least up to 500mg%.

  • PDF

Studies on Salmonella enteritidis Contamination in Chicken Egg using Confocal Scanning Laser Microscopy (Confocal Scanning Laser Microscopy 를 이용한 계란에서의 Salmonella enteritidis 오염 연구)

  • Jang, Keum-Il;Park, Jong-Hyun;Kim, Kwang-Yup
    • Korean Journal of Food Science and Technology
    • /
    • v.31 no.3
    • /
    • pp.771-777
    • /
    • 1999
  • The structural function of three egg membrane layers and cuticle layer, and the effectiveness of 5 film coatings (chitosan, starch, gelatin, dextrin, mineral oil) on the prevention of Salmonella enteritidis penetration was investigated using confocal scanning laser microscopy (CSLM). Diameters of outer membrane fibers, inner membrane fibers and limiting membrane particles in eggshell were $1.5{\sim}7.2$, $0.8{\sim}2.0$ and $0.1{\sim}1.4\;{\mu}m$, respectively and average thicknesses were 10.0, 3.5, $3.6\;{\mu}m$, respectively. Average thickness of cuticle layer was $6.0\;{\mu}m$ and cuticle layer covered $40{\sim}80%$ of total eggshell surface. Average coating films thickness for chitosan, starch, gelatin, dextrin and mineral oil were 2.2, 2.5, 3.9, 3.6 and $5.0\;{\mu}m$, respectively. After immersion process eggshell surface was almost completely covered by coating films. Chitosan coating was most effective among 5 film coatings in inhibiting growth of Salmonella enteritidis. Penetration process of Salmonella enteritidis through eggshell was investigated by multicolor imaging using CSLM and plate counting. Cuticle layer was the most important structure in blocking the penetration. Among 5 film coatings, chitosan showed the best and similar effectiveness with cuticle layer.

  • PDF

Sustained Release Properties of Vitamin C in Chitosan Molecular network (키토산 분자네트 워크속에서 비타민 C의 지속적 방출 특성)

  • Han Sang-Mun
    • Journal of environmental and Sanitary engineering
    • /
    • v.20 no.2 s.56
    • /
    • pp.33-38
    • /
    • 2005
  • Chitosan is a dietary fiber because of a linear polysaccharide composed of $\beta-(1{\rightarrow}4)$-linked 2-amino-2-deoxy-D-glucopyranose. In this study, control release system of vitamin C has been estimated in chitosan molecular network as a vitamin C carrier of controlled release. The amount of released vitamin C were decreased in higher amount of chitosan concentration. Especially, vitamin C were slowly released from chitosan solution in dialysis membrane when compared with vitamin C solution alone in dialysis membrane. These result assumed that chitosan driving force is dependent on chitosan molecular weight and cationic property of amino group with anionic property of vitamin C.

Separation of MeOH/MTBE mixtures through chitosan composite membranes using pervaporation

  • Woo, Dong-Jin;Nam, Sang-Yong;Lee, Young-Moo
    • Proceedings of the Membrane Society of Korea Conference
    • /
    • 1996.04a
    • /
    • pp.62-64
    • /
    • 1996
  • Chitin, which is obtained mainly from the cuticle of a marine crustacean, has recently aroused great interest in its industrial and biomedical applications. Chitosan, deacetylated form of chitin, appears to be more useful for biomedical application and dehydration of aqueous solutions than chitin, since it has both hydroxyl and amino groups that can be modified easily. Amino groups on chitosan reacts with dialdehyde to form a Schiff base and then crosslinked, and can be easily neutralized with sulfuric acid and metal ions. Polyfunctional metal ions can form a metal-polyelectrolyte complexes with chitosan. Membranes used in modules so far working in industrial pervaporation plants are generally of composite type. This composite membrane was prepared by coating a porous polysulfone ultrafiltration membrane support of definite structure with a thin, dense layer of permselective chitosan. To apply industrial scale pervaporation process for dehydration of aqueous ethanol and isopropanol, chitosan composite membranes were prepared and tested at various conditions.

  • PDF

The Effects of Hydroxyapatite-Chitosan Membrane on Bone Regeneration in Rat Calvarial Defects

  • Shin, Jung-A;Choi, Jung-Yoo;Kim, Sung-Tae;Kim, Chang-Sung;Lee, Yong-Keun;Cho, Kyoo-Sung;Chai, Jung-Kiu;Kim, Chong-Kwan;Choi, Seong-Ho
    • Journal of Periodontal and Implant Science
    • /
    • v.39 no.sup2
    • /
    • pp.213-222
    • /
    • 2009
  • Purpose: Recently, interest in chitosan has increased due to its excellent biological properties such as biocompatibility, antibacterial effect, and rapid healing capacity. On the other hand, hydroxyapatite is used as a bone substitute in the fields of orthopedics and dentistry. The hydroxyapatite-chitosan (HA-CS) complex containing hydroxyapatite nanoparticles was developed for synergy of both biomaterials. The objective of this study was to evaluate the effect of hydroxyapatite (HA)-chitosan (CS) membrane on bone regeneration in the rat calvarial defect. Methods: Eight-millimeter critical-sized calvarial defects were created in 70 male Sprague-Dawley rats. The animals were divided into 7 groups of 10 animals and received either 1) chitosan (CS) 100% membrane, 2) hydroxyapatite (HA) 30%/CS 70% membrane, 3) HA 30%/CS 70%, pressed membrane, 4) HA 40%/CS 60% membrane, 5) HA 50%/CS 50% membrane, 6) HA 50%/CS 50%, pressed membrane, or 7) a sham . surgery control. The amount of newly formed bone from the surface of the rat calvarial defects was measured using histomorphometry, following 2- or 8- week healing intervals. Results: Surgical implantation of the HA - CS membrane resulted in enhanced local bone formation at both 2 and 8 weeks compared to the control group. The HA - CS membrane would be significantly more effective than the chitosan membrane in early bone formation. Conclusions: Concerning the advantages of biomaterials, the HA-CS membrane would be an effective biomaterial for regeneration of periodontal bone. Further studies will be required to improve the mechanical properties to develop a more rigid scaffold for the HA-CS membrane.