• 제목/요약/키워드: Chip-packaging

검색결과 480건 처리시간 0.029초

A New Smart Stacking Technology for 3D-LSIs

  • Koyanagi Mitsu
    • 한국마이크로전자및패키징학회:학술대회논문집
    • /
    • 한국마이크로전자및패키징학회 2005년도 ISMP
    • /
    • pp.89-110
    • /
    • 2005
  • A new 3D integration technology using wafer-to-wafer and chip-to-wafer stacking method was described. It was demonstrated that 3D microprocessor, 3D shared memory, 3D image processing chip and 3D artificial retina chip fabricated using 3D integration technology were successfully operated. The possibility of applying 3D image processing chip and 3D artificial retina chip to Robot's eye was investigated. The possibility of implanting 3D artificial retina chip into human eye was investigated.

  • PDF

A Multi-Level Knowledge-Based Design System for Semiconductor Chip Encapsulation

  • Huh, Y.J.
    • 마이크로전자및패키징학회지
    • /
    • 제9권1호
    • /
    • pp.43-48
    • /
    • 2002
  • Semiconductor chip encapsulation process is employed to protect the chip and to achieve optimal performance of the chip. Expert decision-making to obtain the appropriate package design or process conditions with high yields and high productivity is quite difficult. In this paper, an expert system for semiconductor chip encapsulation has been constructed which combines a knowledge-based system with CAE software.

  • PDF

WiFi용 스위치 칩 내장형 기판 기술에 관한 연구 (The Fabrication and Characterization of Embedded Switch Chip in Board for WiFi Application)

  • 박세훈;유종인;김준철;윤제현;강남기;박종철
    • 마이크로전자및패키징학회지
    • /
    • 제15권3호
    • /
    • pp.53-58
    • /
    • 2008
  • 본 연구에서는 상용화된 2.4 GHz 영역대에서 사용되어지는 WiFi용 DPDT(Double Pole Double throw) switch 칩을 laser 비아 가공과 도금 공정을 이용하여 폴리머 기판내에 내장시켜 그 특성을 분석하였으며 통상적으로 실장되는 wire 본딩방식으로 패키징된 기판과 특성차이를 분석 비교하였다. 폴리머는 FR4기판과 아지노 모토사의 ABF(Ajinomoto build up film)를 이용하여 패턴도금법으로 회로를 형성하였다. ABF공정의 최적화를 위해 폴리머의 경화정토를 DSC (Differenntial Scanning Calorimetry) 및 SEM (Scanning Electron microscope)으로 분석하여 경화도에 따라 도금된 구리패턴과의 접착력을 평가하였다. ABF의 가경화도가 $80\sim90%$일 경우 구리층과 최적의 접착강도를 보였으며 진공 열압착공정을 통해 기공(void)없이 칩을 내장할 수 있었다. 내장된 기관과 와이어 본딩된 기판의 측정은 S 파라미터를 이용하여 삽입손실과 반사손실을 비교 분석하였으며 그 결과 삽입손실은 두 경우 유사하게 나타났지만 반사손실의 경우 칩이 내장된 경우 6 GHz 까지 -25 dB 이하로 안정적으로 나오는 것을 확인할 수 있었다.

  • PDF

Comparisons of Interfacial Reaction Characteristics on Flip Chip Package with Cu Column BOL Enhanced Process (fcCuBE®) and Bond on Capture Pad (BOC) under Electrical Current Stressing

  • Kim, Jae Myeong;Ahn, Billy;Ouyang, Eric;Park, Susan;Lee, Yong Taek;Kim, Gwang
    • 마이크로전자및패키징학회지
    • /
    • 제20권4호
    • /
    • pp.53-58
    • /
    • 2013
  • An innovative packaging solution, Flip Chip with Copper (Cu) Column bond on lead (BOL) Enhanced Process (fcCuBE$^{(R)}$) delivers a cost effective, high performance packaging solution over typical bond on capture pad (BOC) technology. These advantages include improved routing efficiency on the substrate top layer thus allowing conversion functionality; furthermore, package cost is lowered by means of reduced substrate layer count and removal of solder on pad (SOP). On the other hand, as electronic packaging technology develops to meet the miniaturization trend from consumer demand, reliability testing will become an important issue in advanced technology area. In particular, electromigration (EM) of flip chip bumps is an increasing reliability concern in the manufacturing of integrated circuit (IC) components and electronic systems. This paper presents the results on EM characteristics on BOL and BOC structures under electrical current stressing in order to investigate the comparison between two different typed structures. EM data was collected for over 7000 hours under accelerated conditions (temperatures: $125^{\circ}C$, $135^{\circ}C$, and $150^{\circ}C$ and stress current: 300 mA, 400 mA, and 500 mA). All samples have been tested without any failures, however, we attempted to find morphologies induced by EM effects through cross-sectional analysis and investigated the interfacial reaction characteristics between BOL and BOC structures under current stressing. EM damage was observed at the solder joint of BOC structure but the BOL structure did not show any damage from the effects of EM. The EM data indicates that the fcCuBE$^{(R)}$ BOL Cu column bump provides a significantly better EM reliability.

Multi-Chip Packaging for Mobile Telephony

  • Bauer, Charles E.
    • 마이크로전자및패키징학회지
    • /
    • 제8권2호
    • /
    • pp.49-52
    • /
    • 2001
  • This paper presents product level considerations for multichip packaging as a cost effective alternative to single chip packaging in the design and manufacture of mobile telephony products. Important aspects include component functionality and complexity, acquisition and logistics costs, product modularity and integration. Multichip packaging offers unique solutions and significant system level cost savings in many applications including RF modules, digital matrix functions and product options such as security, data storage, voice recognition, etc.

  • PDF

MultiChip Packaging for Mobile Telephony

  • Bauer, Charles E.
    • 한국마이크로전자및패키징학회:학술대회논문집
    • /
    • 한국마이크로전자및패키징학회 2001년도 Proceedings of 6th International Joint Symposium on Microeletronics and Packaging
    • /
    • pp.1-7
    • /
    • 2001
  • This paper presents product level considerations for multichip packaging as a cost effective alternative to single chip packaging in the design and manufacture of mobile telephony products. Important aspects include component functionality and complexity, acquisition and logistics costs, product modularity and integration. Multichip packaging offers unique solutions and significant system level cost savings in many applications including RF modules, digital matrix functions and product options such as security, data storage, voice recognition, etc.

  • PDF

Critical Cleaning Requirements for Flip Chip Packages

  • Bixenman, Mike;Miller, Erik
    • 마이크로전자및패키징학회지
    • /
    • 제7권1호
    • /
    • pp.61-73
    • /
    • 2000
  • In traditional electronic packages the die and the substrate are interconnected with fine wire. Wire bonding technology is limited to bond pads around the peripheral of the die. As the demand for I/O increases, there will be limitations with wire bonding technology.

  • PDF