• Title/Summary/Keyword: Chip-packaging

Search Result 481, Processing Time 0.027 seconds

Boundary Element Analysis for Edge Cracks at the Bonding Interface of Semiconductor Chip (반도체 칩 접착계면의 모서리 균열에 대한 경계요소 해석)

  • 이상순
    • Journal of the Microelectronics and Packaging Society
    • /
    • v.8 no.3
    • /
    • pp.25-30
    • /
    • 2001
  • The stress intensity factors for edge cracks located at the bonding interface between the semiconductor chip and the adhesive layer subjected to a uniform transverse tensile strain are investigated. Such cracks might be generated due to a stress singularity in the vicinity of the free surface. The boundary element method (BEM) is employed to investigate the behavior of interface stresses. The amplitude of complex stress intensity factor depends on the crack length, but it has a constant value at large crack lengths. The rapid propagation of interface crack is expected if the transverse tensile strain reaches a critical value.

  • PDF

Thermal Cycling Fatigue Analysis of Flip-Chip BGA Solder Joints (플립 칩 BGA 솔더접합부의 열사이클링 피로해석)

  • 김경섭;유정희;김남훈;장의구;임희철
    • Proceedings of the International Microelectronics And Packaging Society Conference
    • /
    • 2002.11a
    • /
    • pp.27-32
    • /
    • 2002
  • In this paper, global full 3D finite element analysis fatigue models are constructed for flip-chip BGA on board to predict the creep fatigue life of solder joints during the thermal cycling test. The fatigue model applied is based on Darveaux's empirical equation approach with non-linear viscoplastic analysis of solder joints. It was estimated by the creep life as the variations of the four kinds of thermal cycling test conditions, pad structure, composition and size of solder ball. The shortest fatigue life of results was obtained at the thermal cycling testing condition of -65℃ ∼ 150℃. It was increased about 3.5 times in comparison with that of 0℃ ∼ 100℃. As the change of pad structure at the same other conditions, the fatigue life of SMD structure increased about 5.7% as compared with NSMD structure. Consequently, it was confirmed that the fatigue life became short as the creep strain energy density increased in solder joint.

  • PDF

A Study on the Characteristics of Sn-Cu Solder Bump for Flip Chip by Electroplating (전해도금에 의한 플립칩용 Sn-Cu 솔더범프의 특성에 관한 연구)

  • Jung, Seok-Won;Hwang, Hyun;Jung, Jae-Pil;Kang, Chun-Sik
    • Proceedings of the International Microelectronics And Packaging Society Conference
    • /
    • 2002.11a
    • /
    • pp.49-53
    • /
    • 2002
  • The Sn-Cu eutectic solder bump formation ($140{\mu}{\textrm}{m}$ diameter, $250{\mu}{\textrm}{m}$ pitch) by electroplating was studied for flip chip package fabrication. The effect of current density and plating time on Sn-Cu deposit was investigated. The morphology and composition of plated solder surface was examined by scanning electron microscopy. The plating thickness increased with increasing time. The plating rate increased generally according to current density. After the characteristics of Sn-Cu plating were investigated, Sn-Cu solder bumps were fabricated on optimal condition of 5A/dm$^2$, 2hrs. Ball shear test after reflow was performed to measure adhesion strength between solder bump and UBM (Under Bump Metallization). The shear strength of Sn-Cu bump after reflow was higher than that of before reflow.

  • PDF

Research about Design Techniques of A Fire Control System Main Control Board for Individual Combat Weapons using a Small and Low power Processor (소형.저 전력 프로세서를 이용한 소화기 사격통제장치 주제어보드 설계기법 연구)

  • Kwak, Ki-Ho
    • Journal of the Korea Institute of Military Science and Technology
    • /
    • v.8 no.2 s.21
    • /
    • pp.30-37
    • /
    • 2005
  • In this paper, we propose how to design a fire control system main control board for individual combat weapons using a small and low power processor. To design an electric board of small weapon systems, Size and power consumption are very important factors. We solved the problem using selection of an adaptive processor, introduction of MicroChipPackaging method, and separate design of a main board Also we applied these methods to make the fire control system for small arms.

A Study on Flux Immunity MUF for Improving Flip Chip PKG Reliability (Flip Chip PKG 신뢰성 향상을 위한 Flux Immunity 개선 MUF 구현 방안 연구)

  • Lee, Junshin;Lee, Hyunsuk;Kim, Minseok;Kim, Sungsu;Moon, Kiill
    • Journal of the Microelectronics and Packaging Society
    • /
    • v.29 no.2
    • /
    • pp.49-52
    • /
    • 2022
  • As the difficulty of flip chip products increase, interest in stable PKG material technology from the viewpoint of reliability is increasing. Currently, the representative of poor reliability that are mainly occurring in flip chip PKG are Sn bridge and Cu dendrite. Two type defects are caused by void generated by the flux residue around the bump. In order to essentially minimize the risk of this type of reliability failure, the linkage between the composition of Molded Under-fill (MUF) and flux, which is related material, was reviewed. In this study, the correlation between base resin and filler, which is the main component of MUF, and flux, was defined, and the material composition design was carried out by refer to lesson learn. With the current material composition, it was confirmed that moisture absorption reliability 85%/85%/24hrs pass result and void did not occur during destructive analysis, and developed MUF has shown flux immunity improving result in flip Chip PKG. We think this study can be used in yield enhancement of flip chip process and give insights to study in compatibility between MUF and flux.

Thermo-mechanical Behavior Characteristic Analysis of $B^2it$(Buried Bump Interconnection Technology) in PCB(Printed Circuit Board) (인쇄회로기판 $B^2it$(Buried Bump Interconnection Technology) 구조의 열적-기계적 거동특성 해석)

  • Cho, Seung-Hyun;Chang, Tae-Eun
    • Journal of the Microelectronics and Packaging Society
    • /
    • v.16 no.2
    • /
    • pp.43-50
    • /
    • 2009
  • Although thin PCBs(Printed Circuit Boards) have recently been required for high density interconnection, high electrical performance, and low manufacturing cost, the utilization of thin PCBs is severely limited by warpage and reliability issues. Warpage of the thin PCB leads to failure in solder-joints and chip. The $B^2it$(Buried Bump Interconnection Technology) for PCB has been developed to achieve a competitive manufacturing price. In this study, chip temperature, package warpage, chip stress and solder-joints stress characteristics of the PCB prepared with $B^2it$ process have been calculated using thermo-mechanical coupled analysis by the FEM(Finite Element Method). FEM computation was carried out with the variations in bump shapes and kinds of materials under 1.5W power of chip and constant convection heat transfer. The results show that chip temperature distribution reached more quickly steady-state status with PCB prepared with $B^2it$ process than PCB prepared with conventional via interconnection structure. Although $B^2it$ structures are effective on low package warpage and chip stress, with high strength bump materials arc disadvantage for low stress of solder-joints. Therefore, it is recommended that optimized bump shapes and materials in PCB design should be considered in terms of reliability characteristics in the packaging level.

  • PDF

Thermal Analysis and Optimization of 6.4 W Si-Based Multichip LED Packaged Module

  • Chuluunbaatar, Zorigt;Kim, Nam Young
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.39C no.3
    • /
    • pp.234-238
    • /
    • 2014
  • Multichip packaging was achieved the best solution to significantly reduce thermal resistance at the same time, to increase luminance intensity in LEDs packaging application. For the packaging, thermal spreading resistance is an important parameter to get influence the total thermal performance of LEDs. In this study, silicon-based multichip light emitting diodes (LEDs) packaged module has been examined for thermal characteristics in several parameters. Compared to the general conventional single LED packaged chip module, multichip LED packaged module has many advantages of low cost, low density, small size, and low thermal resistance. This analyzed module is comprised of multichip LED array, which consists of 32 LED packaged chips with supplement power of 0.2 W at every single chip. To realize the extent of thermal distribution, the computer-aided design model of 6.4 W Si-based multichip LED module was designed and was performed by the simulation basis of actual fabrication flow. The impact of thermal distribution is analyzed in alternative ways both optimizing numbers of fins and the thickness of that heatsink. In addition, a thermal resistance model was designed and derived from analytical theory. The optimum simulation results satisfies the expectations of the design goal and the measurement of IR camera results. tart after striking space key 2 times.

BUMPLESS FLIP CHIP PACKAGE FOR COST/PERFORMANCE DRIVEN DEVICES

  • Lin, Charles W.C.;Chiang, Sam C.L.;Yang, T.K.Andrew
    • Proceedings of the International Microelectronics And Packaging Society Conference
    • /
    • 2002.09a
    • /
    • pp.219-225
    • /
    • 2002
  • This paper presents a novel "bumpless flip chip package"for cost! performance driven devices. Using the conventional electroplating and etching processes, this package enables the production of fine pitch BGA up to 256 I/O with single layer routing. An array of circuitry down to $25-50{\mu}{\textrm}{m}$ line/space is fabricated to fan-in and fan-out of the bond pads without using bumps or substrate. Various types of joint methods can be applied to connect the fine trace and the bond pad directly. The resin-filled terminal provides excellent compliancy between package and the assembled board. More interestingly, the thin film routing is similar to wafer level packaging whereas the fan-out feature enables high lead count devices to be accommodated in the BGA format. Details of the design concepts and processing technology for this novel package are discussed. Trade offs to meet various cost or performance goals for selected applications are suggested. Finally, the importance of design integration early in the technology development cycle with die-level and system-level design teams is highlighted as critical to an optimal design for performance and cost.

  • PDF

Laser Drilling of High-Density Through Glass Vias (TGVs) for 2.5D and 3D Packaging

  • Delmdahl, Ralph;Paetzel, Rainer
    • Journal of the Microelectronics and Packaging Society
    • /
    • v.21 no.2
    • /
    • pp.53-57
    • /
    • 2014
  • Thin glass (< 100 microns) is a promising material from which advanced interposers for high density electrical interconnects for 2.5D chip packaging can be produced. But thin glass is extremely brittle, so mechanical micromachining to create through glass vias (TGVs) is particularly challenging. In this article we show how laser processing using deep UV excimer lasers at a wavelength of 193 nm provides a viable solution capable of drilling dense patterns of TGVs with high hole counts. Based on mask illumination, this method supports parallel drilling of up over 1,000 through vias in 30 to $100{\mu}m$ thin glass sheets. (We also briefly discuss that ultrafast lasers are an excellent alternative for laser drilling of TGVs at lower pattern densities.) We present data showing that this process can deliver the requisite hole quality and can readily achieve future-proof TGV diameters as small $10{\mu}m$ together with a corresponding reduction in pitch size.