• Title/Summary/Keyword: China coastal water

Search Result 121, Processing Time 0.027 seconds

남해연안해역에 있어서 식물플랑크톤 군집의 계절변동 특성과 기초생산 1. 가뭄시 여수해만의 수질환경과 식물색소량 분포특성

  • 윤양호;김성아
    • Journal of Environmental Science International
    • /
    • v.5 no.3
    • /
    • pp.347-359
    • /
    • 1996
  • A study was carried out on the distribution of chlorophyll a and water quality in the dry season in Yosuhae bay and adjoining sea, Southern Korea, in July of 1994. Concentration of salinity and phosphate were lower in the outer bay than in the inner bay. While nitrate and silicate were higher in the former than in the latter. We were identified with coastal waters of origin from China with the lower salinity in outer bay. The China coastal water was characteristic of high nutrients and phytoplankton biomass, such as chlorophyll a. The principal component analysis-(PCA) on the analytical data proved that high density of phytoplankton biomass , occurred under the condition of low salinity and high concentration of nissoived Inorganic nutrients. It is thought that the thermoharine structure and biological produtions of Yosuhae bay were controlled by the China coastal water in the outer bay.

  • PDF

Key Factors Affecting the Development of Public-Private Partnerships in Water and Wastewater Services in the Jiangsu Province, China

  • Oh, Jihye;Lee, Seungho
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2022.05a
    • /
    • pp.211-211
    • /
    • 2022
  • The marketization reform from the open-door policy in 1978 was not only booming export-oriented industries with foreign investment but also expanding the role of private actors in the Chinese water sector. Private Sector Participation (PSP) has become an important element in developing urban infrastructure by providing better services with advanced facilities. The rapid development of PSP-driven urban water infrastructure in China has a positive impacted on Chinese economic development, particularly in coastal areas. PPPs in some coastal areas have successfully spread out over China since China applied the first Build-Operate-Transfer (BOT) mode in the water sector in the early 1990s. The market-oriented water and wastewater, Public-Private Partnership (PPP) mechanism in the initial period of China has been transformed into a state-dominated PPP mechanism. The development pattern of the water and wastewater PPPs in China has been divided in four stages: the first period from 1984 to 2002, the second period from 2003 to 2008, the third period from 2009 to 2014, and the last period after 2015. The study aims to investigate the successful process of water and wastewater PPPs in local areas through five socioeconomic elements: export-oriented economic strategy, urbanization, cheap land policy, infrastructure investment, and water issues and climate change. In addition, the study focuses on analyzing the extent to which the Chinese government re-asserted its control over the PPP mechanism by classifying five elements in three different development Phases from early 2000 to 2020. The Jiangsu Province in the estern coastal area has actively invited PPP projects in the water and wastewater sectors. The successful introduction and rapid growth of PPPs in the urban water infrastructure has made the province an attractive area for a foreign investor.

  • PDF

Distributions of Water Temperature and Salinity in the Korea Southern Coastal Water During Cochlodinium polykrikoides Blooms (C. polykrikoides 적조 발생시의 한국 남해안의 수온 및 염분 분포)

  • Lee, Moon-Ock;Choi, Jae-Hoon
    • Journal of the Korean Society for Marine Environment & Energy
    • /
    • v.12 no.4
    • /
    • pp.235-247
    • /
    • 2009
  • In order to elucidate the cause of Cochlodinium polykrikoides blooms in the Korea southern coastal water, we investigated observational data of water temperatures and salinities in summer and winter, obtained from the stoppage of ship by NFRDI (National Fisheries Research and Development Institute) as well as composite images by NOAA from 1995 to 2008. Cochlodinium polykrikoides blooms occurred when water temperature was approximately $25.0{\sim}26.0^{\circ}C$ and salinity was 31.00 psu on average in Narodo neighboring seas. Different thermohaline fronts were observed between the Korea southern coastal water and the open sea water in summer and winter, respectively. That is, in winter four fronts were observed between the Korea southern coastal water with low temperature and low salinity, intermediate water originated from Tsushima Warm Current, Tsushima Warm Current with high temperature and high salinity, and the China coastal water with low temperature and low salinity. In contrast, in summer two fronts were observed between the Korea southern coastal water with low temperature and high salinity, Tsushima Warm Current with high temperature and low salinity, and the China coastal water with high temperature and high salinity. These thermohaline fronts also proved to be formed by two water masses with a different physical property, in terms of T-S diagrams. Consequently, we noticed that C. polykrikoides blooms occurring in Narodo neighboring seas in summer had a close relationship with thermohaline fronts observed between the Korea southern coastal water and Tsushima Warm Current.

  • PDF

A Seasonal Circulation in the East China Sea and the Yellow Sea and its Possible Cause

  • Oh, Kyung-Hee;Pang, Ig-Chan
    • Journal of the korean society of oceanography
    • /
    • v.35 no.4
    • /
    • pp.161-169
    • /
    • 2000
  • A seasonal circulation in the East China Sea and the Yellow Sea and its possible cause have been studied with CSK data during 1965-1989. Water mass distributions are clear in winter, but not in summer because the upper layer waters are quite influenced by atmosphere. To solve the problem, a water mass analysis by mixing ratio is used for the lower layer waters. The results show that the distribution of Tsushima Warm Current Water expands to the Yellow Sea in winter and retreats to the East China Sea in summer. It means that there is a very slow seasonal circulation between the East China Sea and the Yellow Sea: Tsushima Warm Current Water flows into the Yellow Sea in winter and coastal water flows out of the Yellow Sea in summer. By the circulation, the front between Tsushima Warm Current Water and coastal water moves toward the shelf break in summer so that the flow is faster in the deeper region. The process eventually makes the transport in the Korea Strait increase. The Kuroshio does not seem to influence the process. A possible mechanism of the process is the seasonal change of sea surface slope due to different local effects of surface heating and diluting between the East China Sea and the Yellow Sea.

  • PDF

A review on the risk, prevention and control of cooling water intake blockage in coastal nuclear power plants

  • Heshan Lin;Shuyi Zhang;Ranran Cao;Shihao Yu;Wei Bai;Rongyong Zhang;Jia Yang;Li Dai;Jianxin Chen;Yu Zhang;Hongni Xu;Kun Liu;Xinke Zhang
    • Nuclear Engineering and Technology
    • /
    • v.56 no.2
    • /
    • pp.389-401
    • /
    • 2024
  • In recent decades, numerous instances of blockages have been reported in coastal nuclear power plants globally, leading to serious safety accidents such as power reduction, manual or automatic power loss, or shutdown of nuclear power units. Loss or shortage of cooling water may compromise the reliability of the cooling water system, thus threatening the operational safety of power plants and resulting in revenue reduction. This study provides a comprehensive review of the current state of cooling water system safety in coastal nuclear power plants worldwide and the common challenges they face, as well as the relevant research on cooling water system safety issues. The research overview and progress in investigation methods, outbreak mechanisms, prevention and control measures, and practical cases of blockages were summarized. Despite existing research, there are still many shortcomings regarding the pertinence, comprehensiveness and prospects of related research, and many problems urgently need to be solved. The most fundamental concern involves understanding the list of potential risks of blockages and their spatially distributed effects in surrounding waters. Furthermore, knowledge of the biological cycles and ecological habits of key organisms is essential for implementing risk prevention and control and for building a scientific and effective monitoring system.

Ieodo Issue and the evolution of People's Liberation Army Navy Strategy (이어도 쟁점과 중국 해군전략의 변화)

  • Kang, Byeong-Cheol
    • Strategy21
    • /
    • s.31
    • /
    • pp.142-163
    • /
    • 2013
  • Ieodo is a submerged rock within a Korea's Exclusive Economic Zone(EEZ) in the East China Sea with its most shallow part about 4.6m below the sea level which has no specific rights for the EEZ delimitation. The United Nations Convention on the Law of the Sea (UNCLOS) stipulates that any coastal state has the rights to claim an EEZ that stretches up to 200 nautical miles from its shore, except where there is an overlap with a neighboring country's claims. Korea claims that Ieodo is within its EEZ as it sits on the Korean side of the equidistant line and the reef is located on the Korea section of the continental shelf. China does not recognize Korea's application of the equidistance principle and insists that Ieodo lies on its continental shelf. According to UNCLOS, Ieodo is located in international waters, rather than one country's EEZ as the two countries have failed to reach a final agreement over the delimitation of the maritime border. This study seeks to understand the evolution of the People's Liberation Army Navy(PLAN) strategy as main obstacles for the EEZ delimitation between Korea and China. PLAN's Strategy evolves from "coastal defense" to "offshore defence", since the late 1980s from a "coastal defence" strategy to an "offshore defence" strategy which would extend the perimeter of defence to between 200 nm and 400 nm from the coast. China's economic power has increased It's dependence on open trade routes for energy supplies and for its own imports and exports. China want secure Sea Lane. PLAN's "offshore defence" strategy combines the concept of active defence with the deployment of its military forces beyond its borders. China's navy try to forward base its units and to achieve an ocean going capability. China's navy expects to have a 'Blue Water' capability by 2050. China insists that coastal states do have a right under UNCLOS to regulate the activities of foreign military forces in their EEZs. China protests several times against US military forces operating within It's EEZ. The U.S. position is that EEZs should be consistent with customary international law of the sea, as reflected in UNCLOS. U.S. has a national interest in the preservation of freedom of navigation as recognized in customary international law of the sea and reflected in UNCLOS. U.S. insists that coastal states under UNCLOS do not have the right to regulate foreign military activities in their EEZs. To be consistent with its demand that the U.S. cease performing military operations in china's EEZ, China would not be able to undertake any military operations in the waters of South Korea's EEZ. As such, to preserve its own security interests, China prefers a status quo policy and used strategic ambiguity on the Ieodo issue. PLAN's strategy of coastal defence has been transformed into offensive defence, Korea's EEZ can be a serious limitation to PLAN's operational plan of activities. Considering China'a view of EEZs, China do not want make EEZ delimitation agreement between Korea and China. China argues that the overlapping areas between EEZs should be handled through negotiations and neither side can take unilateral actions before an agreement is reached. China would prefer Ieodo sea zone as a international waters, rather than one country's EEZ.

  • PDF

Distribution of Dissolved and Particulate Organic Carbon in the East China Sea in Summer (하계 동중국해에서의 용존 및 입자유기탄소의 분포 특성)

  • Kim, Soo-Kang;Choi, Young-Chan;Kim, Jin-Seok
    • Journal of the Korean Society for Marine Environment & Energy
    • /
    • v.11 no.3
    • /
    • pp.124-131
    • /
    • 2008
  • This study was conducted around the southwest sea areas of Jeju and coastal sea areas of China in August 2003 and September 2004 to research distribution patterns of dissolved inorganic nutrients, dissolved and particulate organic carbon. Distribution patterns of nutrients in the East China Sea in summer were shown to be influenced by water masses and phytoplankton. Water masses in the East China Sea in summer, except for coastal sea areas of china, showed less vertical mixing process, causing decline in the inflow of nutrients to surface water. Bottom water, however, showed high concentration, since nutrients made by dissolved organic matters from surface water were accumulated at the bottom. Sea areas with high concentration of chlorophyll a showed low concentration of nutrients and vice versa, indicating biological activities control dissolved inorganic nutrients. The distribution of dissolved organic carbon didn't show any correlation with salinity, temperatures, and water masses. Areas around the river mouth of the Changjiang showed high concentration of dissolved organic carbon more than $100{\mu}M$, but relatively low concentration in the southwest sea areas of Jeju, indicating that the river mouth of the Changjiang coastal water has a great influence on dissolved organic carbon in the East China Sea. Distribution patterns of particulate organic carbon in the research areas showed the highest concentration of average $9.23{\mu}M$ in coastal areas of China influenced by the river mouth of the Changjiang coastal water. By comparison, the concentration was relatively low at $3.04{\mu}M$ in the southeast sea areas of Jeju on which the Taiwan warm current has influence, and was $7.23{\mu}M$ in the central sea areas of Jeju. Thus, there is much indication that the river mouth of the Changjiang coastal water serves as a supplier of particulate organic carbon along with autogenous source. In general, if particulate organic carbon has a high correlation with the concentration of Chlorophyll a, it is thought that it is originated from autogenous source. However, the southeast sea areas of Jeju shows low salinity below 30, therefore it is proper to think that its origin is terrestrial source rather than that of autogenesis.

  • PDF

Fluctuation Characteristic of Temperature and Salinity in Coastal Waters around Jeju Island (제주도 연안 천해역의 수온 · 염분 변동 특성)

  • KO Jun-Cheol;KIM Jun-Teck;KIM Sang-Hyun;RHO Hong-Kil
    • Korean Journal of Fisheries and Aquatic Sciences
    • /
    • v.36 no.3
    • /
    • pp.306-316
    • /
    • 2003
  • We conducted a time-series analysis of temperature and salinity of sea water around Jeju Island, Korea. Monthly mean temperature and salinity was influenced by precipitation and weather conditions on Jeju as well as by oceanographic conditions of the open sea such as the Tsushima Warm Current and sea water in coastal areas. Salinity of Jeju coastal waters was the highest in April, and it was always over 34.00 psu with tiny fluctuation between December and June. Due to the effects of the Tsushima Warm Current, Jeju coastal waters maintained high salinity and stability. Low salinity and its large fluctuations during summer were closely associated with the China Coastal Water and precipitation in Jeju. The place of the lowest water temperature was the northeast coasts of Jeju (Gimneong, Hado, Jongdalri). In winter, as warmer water of the Tsushima Warm Current appeared in western area of Jeju dwindled flowing along the northern coasts of Jeju area and becoming cool, the lowest water temperature often appeared locally in Gimnyeong and its vicinitly in summer. The Tsushima Warm Current flows into the east entrance of Jeju Strait, but its influence is weak because of geometry and strong vertical mixing due to fast tidal currents.

Seasonal Distribution of Oceanic Conditions and Water Mass in the Korea Strait and the East China Sea: Correction of Atmosphere Cooling Effect (대한해협과 동중국해의 해황과 수괴의 계절분포: 대기에 의한 냉각효과 보정)

  • Shin, Hong-Ryeol;Hwang, Sang-Chul;Kwak, Chong-Heum
    • Journal of the Korean earth science society
    • /
    • v.22 no.1
    • /
    • pp.47-64
    • /
    • 2001
  • Water mass classification was conducted using the data of 1985 and 1986 in the East China Sea and the Korea Strait. Kuroshio water (type K) and mixed water (type I) were broadly distributed at 50 m depth in winter and spring, and mixed waters (type I to IV) were distributed in summer and autumn. At 100 m depth of the East China Sea, and mixed water (type I) was broadly distributed in winter and spring, and mixed waters (type I to III) were in summer, and type I was in autumn. Water mass in summer is the most influenced from the Chinese coastal water. In the Korea Strait, the Kuroshio water (type K) was the main water mass in winter and spring, and mixed waters (type I to IV) were in summer and autumn. If temperatures are corrected to remove the cooling effect from the atmosphere, the Kuroshiowater region was diminished, however the mixed water region was expanded in winter and spring. This shows that although the Kuroshio water appears to be a main water mass of the East China Sea and the Korea Strait in winter andspring, in reality the mixed water (type I) which is slightly changed from the Kuroshio water (type K) widely distributed. The tongue-shaped distribution of low density surface water indicates that the water mixed with the Chinese coastal water flows to the Korea Strait and the Okinawa in summer.

  • PDF

An Analysis on Observational Surface and upper layer Current in the Yellow Sea and the East China Sea

  • Kui, Lin;Binghuo;Tang, Yuxiang
    • Journal of the korean society of oceanography
    • /
    • v.37 no.3
    • /
    • pp.187-195
    • /
    • 2002
  • The characteristics of surface circulation in the Yellow Sea and the East China Sea are discussed by analyzing a great deal of current data observed by 142 sets of mooring buoy and 58 sets of drifters trajectories collected in the Yellow Sea and the East China Sea through domestic and abroad measurements. Some major features are demonstrated as bellow: 1) Tsushima Warm Current flows away from the Kuroshio and has multiple sources in warm half year and comes only from Kuroshio surface water in cold half year. 2) Taiwan Warm Current comes mainly from the Taiwan Strait Water in warm half year and comes from the intruded Kuroshio surface water and branches near 27N in cold half year. 3) The Changjiang Diluted Water turns towards Cheju Island in summer and flows southward along the coastal line in winter. 4) The study sea area is an eddy developing area, especially in the southern area of Cheju Island and northern area of Taiwan.