• Title/Summary/Keyword: Chernobyl Accident

Search Result 39, Processing Time 0.024 seconds

Off-Site Consequence Analysis for PWR and PHWR Types of Nuclear Power Plants Using MACCS II Code (MACCS II 코드를 이용한 국내 경수로 및 중수로형 원전의 소외결말분석)

  • Jeon, Ho-Jun;Chi, Moon-Goo;Hwang, Seok-Won
    • Journal of the Korean Society of Safety
    • /
    • v.26 no.5
    • /
    • pp.105-109
    • /
    • 2011
  • Since a severe accident, which happens in low frequency, can cause serious damages, the interests in off-site consequence analysis for a nuclear power plant have been increased after Chernobyl, TMI and Fukushima accidents. Consequences, which are the effects on health and environment caused by released radioisotopes, are evaluated using MACCS II code based on the method of Level 3 PSA. To perform a consequence analysis for the reference plants, the input data of the code were generated such as meteorological data, population distribution, release fractions, and so on. Using these input data, acute and lifetime dose as an organ, CCDF for early fatalities and latent cancer fatalities, and average individual risk were analyzed by using MACCS II code in this study. These results might contribute to establishing accident management plan and quantitative health object.

Genetic radiation risks: a neglected topic in the low dose debate

  • Schmitz-Feuerhake, Inge;Busby, Christopher;Pflugbeil, Sebastian
    • Environmental Analysis Health and Toxicology
    • /
    • v.31
    • /
    • pp.1.1-1.13
    • /
    • 2016
  • Objectives To investigate the accuracy and scientific validity of the current very low risk factor for hereditary diseases in humans following exposures to ionizing radiation adopted by the United Nations Scientific Committee on the Effects of Atomic Radiation and the International Commission on Radiological Protection. The value is based on experiments on mice due to reportedly absent effects in the Japanese atomic bomb (A-bomb) survivors. Methods To review the published evidence for heritable effects after ionising radiation exposures particularly, but not restricted to, populations exposed to contamination from the Chernobyl accident and from atmospheric nuclear test fallout. To make a compilation of findings about early deaths, congenital malformations, Down's syndrome, cancer and other genetic effects observed in humans after the exposure of the parents. To also examine more closely the evidence from the Japanese A-bomb epidemiology and discuss its scientific validity. Results Nearly all types of hereditary defects were found at doses as low as one to 10 mSv. We discuss the clash between the current risk model and these observations on the basis of biological mechanism and assumptions about linear relationships between dose and effect in neonatal and foetal epidemiology. The evidence supports a dose response relationship which is non-linear and is either biphasic or supralinear (hogs-back) and largely either saturates or falls above 10 mSv. Conclusions We conclude that the current risk model for heritable effects of radiation is unsafe. The dose response relationship is non-linear with the greatest effects at the lowest doses. Using Chernobyl data we derive an excess relative risk for all malformations of 1.0 per 10 mSv cumulative dose. The safety of the Japanese A-bomb epidemiology is argued to be both scientifically and philosophically questionable owing to errors in the choice of control groups, omission of internal exposure effects and assumptions about linear dose response.

ROLE OF PASSIVE SAFETY FEATURES IN PREVENTION AND MITIGATION OF SEVERE PLANT CONDITIONS IN INDIAN ADVANCED HEAVY WATER REACTOR

  • Jain, Vikas;Nayak, A.K.;Dhiman, M.;Kulkarni, P.P.;Vijayan, P.K.;Vaze, K.K.
    • Nuclear Engineering and Technology
    • /
    • v.45 no.5
    • /
    • pp.625-636
    • /
    • 2013
  • Pressing demands of economic competitiveness, the need for large-scale deployment, minimizing the need of human intervention, and experience from the past events and incidents at operating reactors have guided the evolution and innovations in reactor technologies. Indian innovative reactor 'AHWR' is a pressure-tube type natural circulation based boiling water reactor that is designed to meet such requirements, which essentially reflect the needs of next generation reactors. The reactor employs various passive features to prevent and mitigate accidental conditions, like a slightly negative void reactivity coefficient, passive poison injection to scram the reactor in event of failure of the wired shutdown systems, a large elevated pool of water as a heat sink inside the containment, passive decay heat removal based on natural circulation and passive valves, passive ECC injection, etc. It is designed to meet the fundamental safety requirements of safe shutdown, safe decay heat removal and confinement of activity with no impact in public domain, and hence, no need for emergency planning under all conceivable scenarios. This paper examines the role of the various passive safety systems in prevention and mitigation of severe plant conditions that may arise in event of multiple failures. For the purpose of demonstration of the effectiveness of its passive features, postulated scenarios on the lines of three major severe accidents in the history of nuclear power reactors are considered, namely; the Three Mile Island (TMI), Chernobyl and Fukushima accidents. Severe plant conditions along the lines of these scenarios are postulated to the extent conceivable in the reactor under consideration and analyzed using best estimate system thermal-hydraulics code RELAP5/Mod3.2. It is found that the various passive systems incorporated enable the reactor to tolerate the postulated accident conditions without causing severe plant conditions and core degradation.

Cases Study of Accidents in High Risk Organizations by System Dynamics (시스템 다이내믹스 기법을 활용한 고위험 조직 사고 사례 분석)

  • Oh, Youngmin;Ryu, Jin
    • Korean System Dynamics Review
    • /
    • v.16 no.3
    • /
    • pp.5-29
    • /
    • 2015
  • The importance of the concept of safety culture has increased in the security of high-risk facility after Chernobyl accident in 1986. This paper elaborated the concept of safety culture and its main factors by Causal Loop Diagram. Due to the decline of safety culture, the occurrence of incidents and accidents require more and more corrective actions to the members of high-risk facilities and thereby increasing their workloads. Employees who must complete the task within the given time have to have time pressures and don't comply with the rules and procedures. Also, a schedule pressure is a big stress for employees, causing mistakes in precision work. In order to improve these problems, CLD of the safety culture in this paper suggests hiring more workers, re-allocation of given workloads and strengthen the learning, communication capabilities and safety leadership. In addition, the two real accident cases were analyzed to test the feasibility of the System Dynamic simulation model through the process of structuring the fault trees on the stationary black out accident in Kori unit 1 in South Korea and Kleen Energy power station explosion in US. The simulation results show that the various safety factors cause the serious accident combined with mechanical failure and safety culture will reduce the possibility of the accidents in these high-risk organizations. This simulation model can contribute to analyzing the impact of the organizational and human factors of safety culture and can provide the alternatives in high-risk facilities.

Monitoring of the Radioactive Contaminants in Dairy Products Imported from the East European Countries (동유럽 국가산 수입 유가공품의 방사능 잔류조사)

  • Lee, Myoung-heon;Cho, Mi-ran;Kim, Yeon-hee;Son, Seong-wan;Kim, Sang-keun
    • Korean Journal of Veterinary Research
    • /
    • v.43 no.3
    • /
    • pp.399-403
    • /
    • 2003
  • The present studies were conducted to monitor radioactive contamination in dairy products imported from 16 countries located in the East Europe which were affected by the Chernobyl nuclear accident. The 556 samples such as butter, cheese, ice cream, whey protein and hydrolysed milk protein products were collected randomly and determined from 1999 to 2002. All sample were below the Koeran and CODEX maximum tolerance level of radioactivity for $^{131}I$, $^{134}Cs$ and $^{137}Cs$.

Thermal conductivity properties of cement matrix utilizing diatomite and silica gel (규조토 및 실리카겔을 혼입한 시멘트 경화체의 열전도율 특성)

  • Kim, Ki-Hoon;Pyeon, Su-Jeong;Lee, Sang-Soo;Song, Ha-Young
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2018.05a
    • /
    • pp.230-231
    • /
    • 2018
  • Recently, the danger for radioactive materials has become a hot topic. Beginning with the Chernobyl nuclear accident in 1996, in 2011, the Fukushima nuclear power plant in Japan suffered major damage such as large-scale casualties and radioactive dangerous area selection. Concerns about leakage of radioactive materials due to recent earthquakes have been deepening in Korea, such as Wolsong Nuclear Power Plant in Gyeongju, and there is a growing interest in the safety of radioactive materials through the media and the media. However, the route to exposure to radioactive materials is not limited to these large-scale nuclear accidents. Typical examples of this are radioactive substances exposed in daily life. In the case of radon gas, the danger is being revealed through current events programs and news, and natural radiation exposure is attracting attention.

  • PDF

Inventory of Pu-238 and Pu-239,240 in the Soil of Korea

  • Lee, Myung-Ho;Lee, Chang-Woo;Park, Yong-Ho;Kim, Sang-Bok;Kim, Sam-Rang
    • Proceedings of the Korean Nuclear Society Conference
    • /
    • 1995.05a
    • /
    • pp.893-898
    • /
    • 1995
  • The cumulative deposition of Pu-238 and Pu-239,240 by the end of 1994 in undisturbed for the last 40 years, was determined at 9 sites in Korea. The cumulative deposition of Pu-238 and Pu-239 ranged from 0.76 to 3.77 and from 18.42 to 101.84 $Bqm^{-2}$, respectively. The mean values of the cumulative deposition of Pu-238 and Pu-239,240 were 2.16 and 54.75 $Bqm^{-2}$, respectively. These values are close to the value of worldwide fallout. No significant contribution to the cumulative deposition of Pu-238 and Pu-239,240 originating from the Chernobyl accident was found at my site.

  • PDF

A Revisit to the Recent Human Error Events in Nuclear Power Plants Focused to the Organizational and Safety Culture

  • Lee, Yong-Hee
    • Journal of the Ergonomics Society of Korea
    • /
    • v.32 no.1
    • /
    • pp.117-124
    • /
    • 2013
  • Objective: This paper presents additional considerations related to organization and safety culture extracted from recent human error incidents in Korea, such as station blackout(i.e., SBO) in Kori#1. Background: Safety culture has been already highlighted as a major cause of human errors after 1986 Chernobyl accident. After Fukushima accident in Japan, the public acceptance for nuclear energy has taken its toll. Organizational characteristics and culture became elucidated as a major contributor again. Therefore many nuclear countries are re-evaluating their safety culture, and discussing any preparedness and its improvement. On top of that, there was an SBO in 2012 in the Kori#1. Korean public feels frustrated due to the similar human errors causing to a catastrophe like Fukushima accident. Method: This paper reassesses Japan's incidents, and revisits Korea's recent incidents. It focuses on the analysis of the hazards rather than the causes of human errors, the derivation of countermeasures, and their implementation. The preceding incidents and conclusions from Japanese experience are also re-analyzed. The Fukushima accident was an SBO due to the natural disaster such as earthquakes and a successive tsunami. Unlike the Fukushima accident, the Kori#1 incident itself was simple and restored without any loss and radioactive release. However, the fact that the incident was deliberately concealed led to massive distrust. Moreover, the continued violation of rules and organized concealment of the accident are serious signs of a new distorted type of human errors, blatantly revealing the cultural and fundamental weakness of the current organization. Result: We should learn from Japanese experiences who had taken pride in its safety technology and fairly high confidence in safety culture. Japan's first criticality accident in JCO facility splashed cold water on that confidence. It has turned out to be a typical case revealing the problems in the organization and safety culture. Since Japan has failed to gain lessons and countermeasure, the issue persists to the Fukushima incident. Conclusion: Safety culture is not a specific independent element, which makes it difficult to either evaluate it properly or establish countermeasures from the lessons. It may continue to expose similar human errors such as concealment of incident and manipulation of bad data. Application: Not only will this work establish the course of research for organization and safety culture, but this work will also contribute to the revitalization of Korea's nuclear industry from the disappointment after the export contract to UAE.

News Focus - Today and Tomorrow of the Korea-made NPP, SMART (뉴스초점 - 한국 토종 원자로 'SMART"의 오늘과 내일)

  • Kim, Hak-Roh
    • Journal of the Korean Professional Engineers Association
    • /
    • v.44 no.6
    • /
    • pp.40-44
    • /
    • 2011
  • Nuclear energy in Korea began in 1958, when the Korea's atomic energy act was formulated and the relevant organizations were founded. Since then, notwithstanding the two catastrophe like TMI and Chernobyl accident, Korea made a wise decision to expand the peaceful uses of the nuclear energy as well as to localize the essential nuclear design technology of fuel and nuclear steam supply system. This decision resulted in the success of export of nuclear power plants as well as research reactor in 2010s. The Korea's nuclear policy, which well utilized 'international crisis in nuclear business' as 'opportunity of Korea to get. nuclear technology', is believed nice policy as a role model of nuclear new-comer countries. Based upon the success story of localization of nuclear technology, Korea had an eye for a niche market, which was a basis of development of SMART, Korea-made integral PWR. The operation of a SMART plant can sufficiently provide not only electricity but also fresh water for 100,000 residents. Last two years, Korea's nuclear industry team led by the Korea Atomic Energy Research Institute completed the standard design of SMART and applied to the Korea's regulatory body for standard design approval. Now the Korea's licensing authority is reviewing the design with the relevant documents, and the design team is doing its best to realize its hope to get the approval by the end of this year. From next year, the SMART business including construction and export will be explored by the KEPCO consortium.

  • PDF

A Study on the Measurement of Activity Concentrations of Pu and Am and Their Isotopic Ratios in the Radioactively Contaminated Soil (방사능으로 오염된 토양에 대한 Pu 및 Am 방사능 농도 및 동위원소비 측정에 대한 연구)

  • Lee, Myung Ho;Song, Byoung Chul;Park, Young Jai;Kim, Won Ho
    • Analytical Science and Technology
    • /
    • v.17 no.6
    • /
    • pp.514-519
    • /
    • 2004
  • Soil samples collected from around the BOMARC Missile Site were measured for their activity concentrations and isotopic ratios of Pu and Am isotopes with particle sizes. The activity concentrations of Pu and Am in the BOMARC soil were remarkably higher than the fallout levels, and the activities decreased nearly exponentially with an increasing particle size of the soil due to a decreasing surface area. The activity ratios of Pu-238 / Pu-239, 240, Pu-241 / Pu-239, 240 and Am-241 / Pu-239, 240 observed in the BOMARC soil were much lower than those attributed to the nuclear reprocess plants and the Chernobyl fallout. Also, the atomic ratio of Pu-240 / Pu-239 in the BOMARC soil was remarkably lower than the fallout value influenced by the nuclear weapons testing and the Chernobyl accident. The atomic ratio of Pu-240 / Pu-239 was so close to the value of the weapons grade Pu released from the crash of a B52 plane in the Thule of the Greenland, such that the Pu isotopes detected in the BOMARC soil could have originated from the weapons grade plutonium.