• Title/Summary/Keyword: Chern-Simons model

Search Result 11, Processing Time 0.025 seconds

ASYMPTOTIC LIMITS FOR THE SELF-DUAL CHERN-SIMONS CP(1) MODEL

  • HAN, JONG-MIN;NAM, HEE-SEOK
    • Communications of the Korean Mathematical Society
    • /
    • v.20 no.3
    • /
    • pp.579-588
    • /
    • 2005
  • In this paper we study the asymptotics for the energy density in the self-dual Chern-Simons CP(1) model. When the sequence of corresponding multivortex solutions converges to the topological limit, we show that the field configurations saturating the energy bound converges to the limit function. Also, we show that the energy density tends to be concentrated at the vortices and antivortices as the Chern-Simons coupling constant $\kappa$ goes to zero.

EXISTENCE AND ASYMPTOTICS FOR THE TOPOLOGICAL CHERN-SIMONS VORTICES OF THE CP(1) MODEL

  • NAM HEE-SEOK
    • The Pure and Applied Mathematics
    • /
    • v.12 no.3 s.29
    • /
    • pp.169-178
    • /
    • 2005
  • In this paper we study the existence and local asymptotic limit of the topological Chern-Simons vortices of the CP(1) model in $\mathbb{R}^2$. After reducing to semilinear elliptic partial differential equations, we show the existence of topological solutions using iteration and variational arguments & prove that there is a sequence of topological solutions which converges locally uniformly to a constant as the Chern­Simons coupling constant goes to zero and the convergence is exponentially fast.

  • PDF

EXISTENCE OF A MULTIVORTEX SOLUTION FOR ${SU(N)_g}{\times}U(1)_l$ CHERN-SIMONS MODEL IN ${R^2}/{Z^2}$

  • Yoon, Jai-Han
    • Communications of the Korean Mathematical Society
    • /
    • v.12 no.2
    • /
    • pp.305-309
    • /
    • 1997
  • In this paper we prove the existence of a special type of multivortex solutions of $SU (N)_g \times U(1)_l$ Chern-Simons model. More specifically we prove existence of solutions of the self-duality equations for $(\Phi(x), j =1, \cdots, N$ has the same zeroes. In this case we find that the equation can be reduced to the single semilinear elliptic partial differential equations studied by Caffarelli and Yang.

  • PDF

NONRELATIVISTIC LIMIT IN THE SELF-DUAL ABELIAN CHERN-SIMONS MODEL

  • Han, Jong-Min;Song, Kyung-Woo
    • Journal of the Korean Mathematical Society
    • /
    • v.44 no.4
    • /
    • pp.997-1012
    • /
    • 2007
  • We consider the nonrelativistic limit in the self-dual Abelian Chern-Simons model, and give a rigorous proof of the limit for the radial solutions to the self-dual equations with the nontopological boundary condition when there is only one-vortex point. By keeping the shooting constant of radial solutions to be fixed, we establish the convergence of radial solutions in the nonrelativistic limit.

REMARKS ON NONTOPOLOGICAL SOLUTIONS IN THE SELF-DUAL CHERN-SIMONS GAUGED O(3) SIGMA MODELS

  • Choi, Nari;Han, Jongmin
    • Bulletin of the Korean Mathematical Society
    • /
    • v.53 no.3
    • /
    • pp.765-777
    • /
    • 2016
  • In this paper, we prove the existence of nontopological solutions to the self-dual equations arising from the Chern-Simons gauged O(3) sigma models. The property of solutions depends on a parameter ${\tau}{\in}[-1,1]$ appearing in the nonlinear term. The case ${\tau}=1$ lies on the borderline for the existence of solutions in the previous results [4, 5, 7]. We prove the existence of solutions in this case when there are only vortex points. Moreover, if $-1{\leq}{\tau}$<1, we establish solutions which are perturbed from the solutions of singular Liouville equations.