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RADIAL SYMMETRY OF TOPOLOGICAL
ONE-VORTEX SOLUTIONS IN THE
MAXWELL-CHERN-SIMONS-HIGGS MODEL

JONGMIN HAN

ABSTRACT. In this paper we show the radial symmetry of topologi-
cal one-vortex solutions in the Maxwell-Chern-Simons-Higgs Model.

1. Imtroduction

The self-duality is an important notion in various field theories in
the sense that it allows a reduction of second order equations of motion
to first order equations which are simpler to analyze and correspond
to the minimization of energy. The classical Abelian-Higgs Model with
the Maxwell term gives the phenomenological descriptions on super-
conductivity at low temperature, and it admits the self-dual structure
[7]. On the other hand, for the high temperature superconductivity,
we need to consider charged vortices which are obtained by adding the
Chern-Simons term into the action. In [5, 6], the authors consider Chern-
Simons-Higgs Model which contains the Chern-Simons term but exclude
the Maxwell term. This model saturates the self-dual structure with the
6th order potential.

A natural question is whether there is any self-dual system contain-
ing both the Maxwell term and the Chern-Simons term. The Maxwell-
Chern-Simons-Higgs Model(MCSH) was proposed in [8] for the pur-
pose of unifying the Abelian-Higgs Model and the Chern-Simons-Higgs
Model. In addition to allowing both the Maxwell term and the Chern-
Simons term in MCSH, the authors introduce a neutral scalar field in
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order to get the self-dual structure. The static energy functional of
MCSH is given by

1 1
EGAN) = [ IDadl+ SIFA? + 0P A3 + 51V Aol
1 1
(11) |61 N? + S[VNE + S (gl + kN - g)?
with the following Gauss constraint equation

(1.2) —AAy+2¢%|$|* Ao = —KF4.
Here i = /-1, Ay : R? > R, and

( g>0 : the charge of the electron,
k>0 : the Chern-Simons coupling constant,
$:R? > C : the complex Higgs field,
A= (A, As) : the coupled gauge potential,
Dap =V —iqAg, the covariant derivative,
Fp= 0145 — 024, : the magnetic field,
| N:R? - R : the neutral scalar field.

It is easy to check that the functional £(¢, A, N) is invariant under the
gauge transformation

(¢, 4, N) — (eXp, A+ Vx, N),

for x : R? = R.
Using(1.2) and integrating by parts, we obtain

8(¢7 A7 N)
- / (1016 % iD26? + 162 Ao £ NP2 4 L[V Ao £ UNP
R2

1
+51Fa (gl + xN = )[?)dz = @,

where

@:q/ Fadzx.
R2

If @ is positive (negative), then choose the upper (lower) sign. This
yields the lower bound of the energy functional:

E(d, A, N) > 1@,
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which is saturated by the following system of self-dual equations

(1.3) Di¢+iDsp = 0,
(1.4) Ay£N = 0,
(1.5) Fa+(qld)* +kN-¢q) = 0.

The boundary conditions are given by the finite energy condition of
(1.1): as |x| — oo, either

¢ — 1 and N —0,

or

6| -0 and N-—I
K

The former is called topological, while the latter nontopological.

Let us take the upper signs in (1.3)-(1.5). To examine the self-dual
equations further, we use the classical Jaffe-Taubes arguments [7]. In
fact, the equation (1.3) implies that ¢ is holomorphic up to a nonvanish-
ing multiple factor and has exactly d zeros allowing multiplicities. Thus
we may assume that ¢ takes the form

k
1 .
(1.6) &(z) = exp ( iu(m) + zan arg(z — pj) ),
Jj=1
where the points py,--- ,pg, called the vortex points, are the distinct
zeros of ¢ with multiplicities ny, - - - , ng, respectively. Clearly, ny +---+

ng = d. We observe that the arbitrary choice on the imaginary part of
¢ merely reflects the gauge invariance of (1.2)-(1.5). Now the equations
(1.2), (1.4), and (1.5) are transformed into

k
(1.7) Au = 2¢°(e" — 1) — 2rqdg + 47 Y n;dp,,
j=1
(1.8) Ady = —rg(e* — 1) + (K% + 29%e*) Ag.
The boundary conditions are rewritten as
(1.9) topological : u — 0 and N=—-4y—0,

(1.10) nontopological : u — —oo and N=—-4y— %,

as |z| — oo. Conversely, once we find a solution (u, Ag) of (1.7) and

(1.8), we may recover A and N from (1.3) and (1.4) by the formula
qA; +igAy; = —2id1n ¢, N = —Ay

where 8 = (01 +102)/2.
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The existence of topological solutions for (1.7), (1.8), and (1.9) was
proved in [2], while the nontopological solutions for (1.7), (1.8), and
(1.10) in [1]. On the other hand one can consider the self-dual equations
(1.2)-(1.5) on the Hooft type periodic domain, of which solutions are
called condensate solutions. For the results of the condensate solutions,
which satisfy (1.7) and (1.8) on a periodic domain, refer to [3, 9, 10].

In this paper we are interested in the topological solutions when all
the vortex points are equal to a point, say, p = 0. For this case, let us
rewrite (1.7) as

(1.11) Au = 2¢%(e* — 1) — 2kqAg + 4mdéy.

Although it is expected that every solution of (1.8) and (1.11) with (1.9)
is radial, it has not been proved rigorously yet. The purpose of this paper
is to give a mathematical proof for it. We establish

THEOREM 1.1. Every solution of (1.8), (1.9), and (1.11) is radially
symmetric about the origin.

We provide the proof of Theorem 1.1 in the next section. We close
this section with a remark. In [4] topological solutions was studied in a
unified framework for several self-dual Chern-Simons models which re-
duce to an elliptic equation by the Jaffe-Taubes argument. In particular,
the radial symmetry of topological one-vortex solutions was proved for
the following equation:

Au = f(e*) +4ndsy  in R?
u—0 as |z| — oo,
where f : [0,00) — R is a smooth function satisfying f(1) =0, f’(1) > 0,
f(t) <0 on (0,1), and  f(t) >0 on (1,00).

Theorem 1.1 shows that the same conclusion holds for the self-dual equa-
tions (1.8), (1.9), and (1.11) which consist of a system of elliptic equa-
tions.

2. Proof of main theorem
This section is devoted to the proof of Theorem 1.1. We begin with
the following lemma.

LeEmMMA 2.1. If (u, Ap) is a solution of (1.8), (1.9), and (1.11), then
u < 0 in R2\{0} and Ay < 0 in R?.
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PROOF. Although this lemma is well known in [3], we provide a proof
for the sake of completeness.

Let y be a maximum point of Ag. Suppose that Ag(y) > 0. Applying
the maximum principle to (1.8), we see that

Kq
<« ™M uly) _
Ao(y) < T 24268 (e 1).

In particular, y # 0 and u(y) > 0. Let z be a maximum point of u.
Again, it comes from the maximum principle applied to (1.11) that

Ao(z) > %(eu@ ~1).

Consequently,
Loy _ 1) <« yeu _
Iew -1) < Lo -y
< Ag(z) < Ao(y)
< M () ),

k2 + 2¢2eul¥)

Since u(y) > O, this gives a contradiction. Therefore we proved that
Ap <0.
On the other hand, since Ay < 0, the equation (1.11) reads

Au > 2¢%(e¥ — 1) + 4nddy
in the sense of distribution. Then the strong maximum principle implies
that u < 0 in R%\{0}. Let us rewrite (1.8) as
AAg — (K2 +2¢%")4y = —kq(e*—1)>0  in R?
Ap— 0 as |z| — oo.
Therzl, similarly by the strong maximum principle, we find that A4g < 0
in R=. O

For the proof of Theorem 1.1, we use the method of moving planes.
To this aim, for A < 0 and a solution (u, Ag) of (1.8), (1.9), and (1.11),
let

Yo = {II: € R2]x1 < )\},

'y = 9%,
zx = (2),0),
ur(z1,z2) = w(2A — z1,29) forze £y = Ea\{za},
Apa(z1,22) = Ao(2X — 11,22) for x € I,
ua(z) = ur(z) —u(z) for z € £,

wa(z) = Aoa(z) — Ao(z) for z € ¥,.
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LEMMA 2.2. There exists a number Ry > 0 such that vy < 0 in I\
and wy < 0in X, for all A < —Ry.
ProOF. Fix 1 € (0,1) so close to 1 that
g’ > KX (1 —1).

Then there exists a number Ry > 0 such that

(2.1) Innp <u(z) <0 for |z| > Rj.
We also choose Ry > 0 satisfying
(2.2) —2%(1 ) < Ao(z) <0  for  |x| > Ry
Set
m1 = max u(zx), and me = max Ao(z),
x| <R3 |z|<Rs

where R3 = max{Rj, Rp}. Since u,A — 0 as |z| — 00, there exists a
number R4 > Rg3 verifying
m1 < u(z) <0, me < Ag(z) <0  V |z| > Ry
Set Rgp = 2R4 and let A < —Rg be given. Then it is obvious that
vy < 0 on Bg,(za)\{zx},
wy < 0 on Br,(xy).

We claim that wy < 0 on X). Assume the contrary and let y be a
maximum point of wy on £ with wy(y) > 0. Then y € £3\\Bgr,(z1). A
simple computation yields that on £\ Bg,(z),

(2.3) Avy = 2¢%‘vy — 2kqua,

(2.4) Awy = (k%+2¢%" )wy — (kg — 2¢% Ag)ebvy,

where ((z) lies between u)(z) and u(z). As in Lemma 2.1, by (2.1) and
(2.2), we are led to

kg —2¢°Ao(y) c(w)

k2 + 2q2ew(v) vA(y)-

wx(y) <

In particular, vx(y) > 0. Thus,

rg — 2¢°Ao(y)
K2 + 2q27)

rq+ rg(1 —n)
k% + 2¢%n

wx(y) ua(y)

(2.5) ua(y)-
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Let z be a maximum point of vy on ) 5. Then

vA(2) > va(y) > 0.
Hence by (2.1) and (2.3)

(2.6) wa(2) 2 2¢Oy () 2 Iy us(v).
Since vy (y) > 0, the equation (2.5) together with (2.6) implies that

9 . rg+rg(1—m)
kT K24 2¢%n

bl

namely,
¢*n* < k(1 —n).
This violates the choice of 7. Hence wy < 0 on ).
Now, on 2)\Bg,(z,), we get
Avy, — 2¢%e‘ vy = —2kqwy > 0.

Since vy < 0 on 9( Ya\Br,(xy) ), it comes from the maximum principle
that vy < 0 on Xx\Bg,(xx). This finishes the proof. O

In view of Lemma 2.2 we can define a number
)\ozsup{)\<0|v“_<_00n2~3w wy, <0on X, Vo< Ab
LEMMA 2.3. 3 =0.

PROOF. Suppose A\g # 0. For A\g < A < 0, let y) and 2, be maximum
points of wy and vy, respectively. Then either wy(yx) > 0 or vy(2)) > 0.
Applying the maximum principle to (2.3) and (2.4), we observe that

kg — 2¢° Ao(y»)
K2 + 2q26u>\(yA)
Kq — 2112140(3//\)6((”)
K2 + 2(]26”)‘ (¥x)

2
< K120 AW () .
- ;{2 + 2q26uA(yA)
Kq — 2612140(11,\)64(3,9 K
k2 + 2q2evr(¥2) qeS(zx)
Therefore, if one of wy(yy) and vy(zy) is positive, then so is the other.
Consequently, we see that both wy(yx) > 0 and vp(2)) > 0. Let n, m;,
and R; be the same numbers as in the proof of Lemma 2.2 with ¢ = 1,2

and j = 0,---,4. Set ro = 3max{Rg,—Ag}. Then it holds that either
lya] < ro or |zx| < 7. Otherwise, since wy(yx) > 0 and vy(2)) > 0, the

SWux(ya)

wi(yr) <

<

vA(22)

K
pesey wa(zx)

<

wx(yY»)-
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equations (2.5) and (2.6) would be satisfied by means of the replacement
of y and z by y) and z,. This leads us to a contradiction as in the proof
of Lemma 2.2.

Now for Ag < A < 0, either Py = {yx : |ya| < 7m0} or Qx = {22
|za| < ro} is an infinite set. Suppose that P is infinite. Then passing to
a subsequence, we may assume that y, converges to a point y. Obviously,
Yy € Ty, Uy, wr(y) = 0, and Vwy,(y) = 0. We see from (2.4) that

Awy, — (I‘Ez + 2qt2e“)w)\0 = ——(m]e< — 2q2e<Ao,,\0)v,\o >0 on Xy,.

Thus it follows from the strong maximum principle that w), cannot
attain its maximum value in X),. This implies that y € I'y,. But in
this case it come from the Hopf Lemma that (8wy,/0z1)(y) > 0, which
contradicts to the fact that Vw,,(y) = 0.

If Q) is an infinite set, we come to a similar contradiction by virtue
of (2.3). In the sequel, we have A\ = 0. O

Since Ay = 0, it is seen that for ;7 < 0
u(—z1,22) < ulz, x2), and Ap(—z1,22) < Ap(1, T2).

Now the standard argument of moving planes assures Theorem 1.1.

References

[1] D. Chae and O. Yu. Imanuvilov, Non-Topological Multivortez Solutions to the
Self-Dual Mazwell-Chern-Simons-Higgs Systems, J. Func. Anal. 196 (2002), 87—
118.

[2] D. Chae and N. Kim, Topological multivortez solutions of the self-dual Mazwell-
Chern-Simons-Higgs system, J. Diff. Eqns. 134 (1997), 154-182.

{3] , Vortez condensates in the relativistic self-dual Mazwell-Chern-Simons-
Higgs system, RIM-GARC Preprint Ser. 97-50 (1997).

[4) J. Han, Existence of topological multivortex solutions in the self-dual gauge the-
ories, Proc. Royal Soc. Edinburgh A 130 (2000), 1293-1309.

[5] J. Hong, Y. Kim, and P. Y. Pac, Multivortez Solutions of the Abelian Chern-
Simons-Higgs Theory, Phys. Rev. Lett. 64 (1990), 2230-2233.

[6] R. Jackiw and E. J. Weinberg, Self-dual Chern-Simons Vortices, Phys. Rev. Lett.
64 (1990), 2234-2237.

[7] A. Jaffe and C.H. Taubes, Vortices and Monopoles, Birkhauser, Boston, 1980.

(8] C. Lee, K. Lee, and H. Min, Self-dual Mazwell-Chern-Simons solitons, Phys.
Lett. B 252 (1990), 79-83.

[9] T. Ricciardi, Asymptotics for Mazwell-Chern-Simons multivortices, Nonlinear
Anal. TMA 50 (2002), 1093-1106.

[10] T. Ricciardi and G. Tarantello, Vortices in the Mazwell-Chern-Simons theory,
Comm. Pure Appl. Math. 53 (2000), 811-851.




Radial symmetry of topological one-vortex solutions 291

Department of Mathematics

Hankuk University of Foreign Studies
Kyounggi-do 449-791, Korea

E-mail: jmhan@hufs.ac.kr



